樊硕 蒿宣赫 史新鹏 耿启迅 王登瑶
山东建筑大学机电工程学院,山东济南,250101;
摘要:3D打印技术通过逐层堆积成型原理突破传统制造局限,推动机械零件向轻量化、功能集成化方向革新。3D打印技术通过数字化建模与分层制造机制革新传统制造模式,突破了复杂结构零件的成型限制。对此,本文阐述了机械零件3D打印技术的类型与基本原理,其主流工艺涵盖熔融沉积、光固化、粉末烧结及金属沉积等技术,其中金属直接能量沉积技术已成功应用于航空航天领域的高性能构件制造,光固化技术则在精密医疗器械领域展现独特优势。进一步分析总结了国内外在零件设计、材料工艺、质量控制等方面的前沿技术,结合高精度制造发展需求,讨论了未来3D打印技术主要发展趋势与技术挑战,以突破更高打印精度的工业级应用门槛,为高端装备的定制化、功能化制造提供可靠技术支撑。
关键词:3D打印;零件设计;材料工艺;质量控制;技术应用
参考文献
[1]刘哲.基于3D打印技术的机械零件创新自由设计[J].内燃机与配件,2018,(08):22-23.
[2]Gu G Y, Zou J, Zhao R K, et al. Softwall-climbing robots[J]. Soft Robots, 2018, 28874: 1-12.
[3]张德龙.基于3D打印技术下机械零件创新自由设计的思考[J].现代制造技术与装备,2018,(06):80-82.
[4]叶冬森,沈培良,张大川,等.3D打印技术与传统加工技术对比的优缺点[J].民用飞机设计与研究,2021,(04):126-130.
[5]Zhou L Y, Gao Q, Zhan J F, et al. Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots[J]ACS Applied Materials &Interfaces, 2018, 10(27): 23208-23217.
[6]Zhao T T, Yu R, Li X P, et al. A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms[J]. Journal of Materials Science, 2019, 54(6): 5101-5111.
[7]肖文哲.基于3D打印技术的机械零件设计研究[J].山东工业技术,2019,(09):39-40.
[8]Kuang X, Roach D J, Wu J T, et al. Advances in 4D printing: Materials and applications[J]. Advanced Functional aterials, 2019, 2(29): 1805290-1805291.
[9]白洁.3D打印技术在机械加工中的应用分析[J].造纸装备及材料,2021,50(12):68-70.
[10]施建平,杨继全,王兴松.多材料零件3D打印技术现状及趋势[J].机械设计与制造工程,2017,46(02):11-17.
[11]李传涛.3D打印技术在航空铝合金薄壁零件上的应用[J].机电信息,2019,(15):80-81.
[12]Zhou L Y, Gao Q, Fu J Z, et al. Multimaterial 3D printing of highly stretchable silicone lastomers[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23573-23583.
[13]Nadgorny M, Xiao Z Y, Chen C, et al. Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28946-28954.
[14]Odent I, Wallin T J, Pan W, et al. Highly elastic, transparent, and conductive 3d-printed ionic composite hydrogels[J]. Advanced Functional Materials, 2017, 27(33): 1701807.
[15]邢恒远,孟宪庄,陈娜.3D打印技术在机械制造领域中的应用[J].机电工程技术,2021,50(04):209-210.
[16]胡敏蕙.3D打印技术与SolidWorks软件在机械零件三维建模中的应用研究[J].机械设计与制造,2017(9):45-48.
[17]韩佳彤,李召波,张宏娜,等.基于Solidworks三维建模的无人机结构设计及气动仿真[J].机械工程学报,2023,59(3):112-120.
[18]黄林琪,陈显扬,陈韵律,等.基于3D打印的机械零件轻量化设计与制造[J].机电工程技术,2021,50(8):96-100.
[19]刘旭红,欧笛声.基于SIMP优化理论的注塑机固定模板拓扑优化[J].中国塑料,2008,22(2):90-92.
[20]王冲.渐进结构优化方法及其在回转体拓扑优化中的应用研究[D].西安:西北工业大学,2012.
[21]吴志学.机械零件形状优化设计的仿生学方法[J].机械强度,2005,27(3):334-338.
[22]胡宝文,穆瑞元,黄亮,等.航空叶片电加工多物理场耦合仿真及实验研究[J].制造技术与机床,2021,(9):43-48.
[23]李国倡,郭孔英,张家豪,等.电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究[J].物理学报,2024,73(07):23-34.
[24]Chen T T, Bakhshi H, Liu L, et al. Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators [J]. Advanced Functional Materials, 2018, 28(19): 1800514.
[25]周松.基于SLM的金属3D打印轻量化技术及其应用研究[D].杭州:浙江大学,2017.
[26]Nurhudan A I, Supriadi S, Whulanza Y, et al. Additive manufacturing of metallic based on extrusion process: A review[J]. Journal of Manufacturing Processes, 2021, 66: 228-237.
[27]张振华,韩佳凝.GO/MgO界面强化镁基复合材料研究[J].复合材料学报,2023,40(4):2231-2240.
[28]姚庆强,吴成铁,王黎明,等.3D打印骨关节修复重建技术体系[J].中华骨科杂志,2017,37(12):785-792.
[29]Hameed A Z, Aravind Raj S, Kandasamy J, et al. 3D printing parameter optimization using taguchi approach to examine acrylonitrile styrene acrylate (ASA) mechanical properties[J]. Polymers, 2022, 14(16): 3256.
[30]袁发庭,吕凯,唐波,等.干式电抗器多物理场协同优化[J].中国电机工程学报,2021,41(22):7897-7905.
[31]Zhao R, Smith J. Multi-nozzle DIW for flexible electronic skin[J]. Advanced Materials Technologies, 2022, 7(8): 2100894.
[32]Zeng F, Liu B, Pan Y, et al. Sub-nanometric amorphous V-O clusters without grain boundaries bonded in yolk-shell carbon nanospheres for superior sodium-ion storage[J]. Composites Part B: Engineering, 2023, 252: 110532.
[33]全旭松,独伟锋,褚东亚,等.大口径KDP晶体装配附加面形畸变抑制工艺优化[J].光学精密工程,2023,31(09):1347-1356.
[34]毛剑,林微超,宫宁宁,等.铝合金-丁腈橡胶复合密封件的界面结合性能[J].机械工程学报,2020,56(10):95-101.
[35]Ghosh A, Orasugh J T, Ray S S, et al. Integration of 3D printing–coelectrospinning: Concept shifting in biomedical applications[J]. ACS omega, 2023, 8(31): 28002-28025.
[36]刘明杨,齐习猛,朱晓阳,等.基于电场驱动喷射微3D打印和辊轮辅助热压印制造嵌入式金属网格柔性透明导电薄膜[J].科学通报,2020,65(12):1151-1164.
[37]刘振宇,李志强,黄文,等.基于机器学习的FDM工艺参数多目标优化[J].工程塑料应用,2021,49(11):67-71.
[38]顾雪平,李扬,吴献吉.基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估[J].电工技术学报,2013,28(10):271-279.
[39]郭帅东.激光选区熔化成形Inconel718表面精度控制与组织性能优化[D].上海:上海第二工业大学,2022.
[40]魏建锋.镍基高温合金SLM成形质量研究及工艺优化[D].无锡:江南大学,2020.
[41]Viveros M F C, Arciniegas A J R. Development of a closed-loop control system for the movements of the extruder and platform of a FDM 3D printing system[C]//NIP & Digital Fabrication Conference. Society for Imaging Science and Technology, 2018, 34: 176-181.
[42]吴伟,张云霄,邓继旺,等.熔融沉积(FDM)工艺参数对制件表面精度及力学性能影响的实验研究[J].北华航天工业学院学报,2019,29(01):11-13.
[43]Yuan X, Mai Z, Li Z, et al. A 3D-printing approach toward flexible piezoelectronics with function diversity[J]. Materials Today, 2023, 69: 160-192.
[44]曹阳,张晨,陈笑,等.应用于紫外DLP-3D打印系统的低体积收缩率和高固化速度的光敏树脂研究[J].功能材料,2019,50(07):7024-7028,7034.
[45]Seo B, Park H K, Kim H G, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing[J]. Surface and Coatings Technology, 2021, 406: 126640.
[46]李彬,张捷,康徐红,等.数控加工参数对FDM成型精度影响研究[J].机械设计与制造,2018,(12):199-201.
[47]Mukhtarkhanov M, Perveen A, Talamona D. Application of stereolithography based 3D printing technology in investment casting[J]. Micromachines, 2020, 11(10): 946.
[48]Haldar B. Enhancing Dimensional Accuracy in Budget-Friendly 3D Printing through Solid Model Geometry Tuning and Its Use in Rapid Casting[J]. Machines, 2023, 11(11): 1020.
[49]Dey A, Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics[J]. Journal of Manufacturing and Materials Processing, 2019, 3(3): 64.
[50]Martins G, Vicente C M S, Leite M. Polymer-metal adhesion of single-lap joints using fused filament fabrication process: Aluminium with carbon fiber reinforced polyamide[J]. Applied Sciences, 2023, 13(7): 4429.