欢迎访问新加坡聚知刊出版有限公司官方网站
65 84368249info@juzhikan.asia
Finite-Time Fault-Tolerant Formation Control for Multi-UAV Systems Based on Extended State Observer
  • ISSN:3041-0843(Online) 3041-0797(Print)
  • DOI:10.69979/3041-0843.25.01.044
  • 出版频率:季刊
  • 语言:英文
  • 收录数据库:ISSN:https://portal.issn.org/ 中国知网:https://scholar.cnki.net/journal/search

Finite-Time Fault-Tolerant Formation Control for Multi-UAV Systems Based on Extended State Observer
Tao Li1  Zehao Dong2

1 Guangdong Airport Baiyun Information Technology Co., LTD,Guangzhou  Guangdong, 510470;

2 Shandong Institute of Aeronautics,Binzhou  Shandong Province, 256600;

Abstract:This paper investigates the cooperative fault-tolerant control problem for multiple unmanned aerial vehicles(UAVs) under actuator faults and external disturbances.Using a graph- theoretic framework, the communication among UAVs is struc- tured to support distributed coordination.Actuator bias faults and unknown disturbances are treated as a combined disturbance and estimated together with system states through an extended s- tate observer (ESO).To enhance estimation accuracy, an adaptive algorithm is introduced to adjust fault and disturbance parame- ters in real time.A sliding mode controller is then developed to compensate for estimation errors and actuator failures, ensuring robust tracking performance. Lyapunov-based stability analysis guarantees the finite-time convergence of formation errors under the proposed control scheme. Numerical simulations verify the effectiveness of the approach, demonstrating strong fault-tolerant coordination capabilities suitable for practical multi-UAV appli- cations.

Keywords:Fault tolerant formation control;Sliding mode controll design;Multi-UAVs.

REFERENCES

[1] Li  Y,  Wang  X,  Sun  J,  et  al.  Data-driven  consensus  control  of  fully distributed event-triggered multi-agent systems[J]. Science China Infor- mation Sciences, 2023, 66(5): 152202.

[2] Hu J, Bhowmick P, Lanzon A. Group coordinated control of networked mobile robots with applications to object transportation[J]. IEEE Trans- actions on Vehicular Technology, 2021, 70(8): 8269-8274.

[3] Liu Y, Liu J, He Z, et al. A survey of multi-agent systems on distributed formation control[J]. Unmanned Systems, 2024, 12(05): 913-926.

[4] .Ouyang Q, Wu Z, Cong Y, et al. Formation control of unmanned aerial vehicle swarms: A comprehensive review[J]. Asian Journal of Control, 2023, 25(1): 570-593.

[5] Ziquan  Y  U,  Zhang  Y,  Jiang  B,  et  al.  A  review  on  fault-tolerant cooperative  control  of multiple  unmanned  aerial  vehicles[J].  Chinese Journal of Aeronautics, 2022, 35(1): 1-18.

[6] Gu S, Kuba J G, Chen Y, et al. Safe multi-agent reinforcement learning for multi-robot control[J]. Artificial Intelligence, 2023, 319: 103905.

[7] Yu  Y,  Guo  J,  Ahn  C  K,  et  al.  Neural  adaptive  distributed  formation control  of nonlinear  multi-UAVs  with  unmodeled  dynamics[J].  IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11): 9555-9561.

[8] Wang  H,  Shan  J.  Fully  distributed  event-triggered  formation  control for multiple quadrotors[J]. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12566-12575.

[9] Liu B, Li A, Guo Y, et  al. Adaptive distributed finite-time formationcontrol  for  multi-UAVs  under  input  saturation  without  collisions[J]. Aerospace Science and Technology, 2022, 120: 107252.

[10] Khodaverdian  M,  Hajshirmohamadi  S,  Hakobyan  A,  et  al.  Predictor- based constrained fixed-time sliding mode control of multi-UAV forma- tion flight[J]. Aerospace Science and Technology, 2024, 148: 109113.

[11] Cui G, Xu H, Chen X, et al. Fixed-time distributed adaptive formation control for multiple QUAVs with full-state constraints[J]. IEEE Trans- actions on Aerospace and Electronic Systems, 2023, 59(4): 4192-4206.

[12] Yan  D,  Zhang  W,  Chen  H,  et  al.  Robust  control  strategy  for  multi- UAVs system using MPC combined with Kalman-consensus filter and disturbance observer[J]. ISA transactions, 2023, 135: 35-51.

[13] Li  J,  Liu  J,  Huangfu  S,  et  al.  Leader-follower  formation  of  light- weight UAVs with novel active disturbance rejection control[J]. Applied Mathematical Modelling, 2023, 117: 577-591.

[14] Wang  J,  Bi  C,  Wang  D,  et  al.  Finite-time  distributed  event-triggered formation  control  for  quadrotor  UAVs  with  experimentation[J].  ISA transactions, 2022, 126: 585-596.

[15] Jia J, Chen X, Wang W, et al. Distributed observer-based finite-time con- trol of moving target tracking for UAV formation[J]. ISA transactions, 2023, 140: 1-17.

[16] Yang P, Zhang A, Bi W, et al. Cooperative group formation control for multiple  quadrotors  system  with  finite-and  fixed-time  convergence[J]. ISA transactions, 2023, 138: 186-196.

[17] Cui G, Xu H, Chen X, et al. Fixed-time distributed adaptive formation control for multiple QUAVs with full-state constraints[J]. IEEE Trans- actions on Aerospace and Electronic Systems, 2023, 59(4): 4192-4206.

[18] Li Y, Dong S, Li K, et al. Fuzzy adaptive fault tolerant time-varyingformation  control  for  nonholonomic  multirobot   systems  with  range constraints[J].  IEEE  Transactions  on  Intelligent  Vehicles,  2023,  8(6): 3668-3679.

[19] Cheng  P,  Cai  C,  Park  P  G.  Distributed  event-triggered  fractional- order fault-tolerant control of multi-UAVs with full-state constraints[J]. Nonlinear Dynamics, 2024, 112(2): 1069-1085.

[20] Hu F, Ma T, Su X. Adaptive Fuzzy Sliding Mode Fixed-Time Control for Quadrotor Unmanned Aerial Vehicles with Prescribed Performance[J]. IEEE Transactions on Fuzzy Systems, 2024.

[21] Wu Y, Liang H, Xuan  S, et  al. Extended  state observer based  finite- time fault-tolerant formation control for multi-UAVs[J]. Journal of the Franklin Institute, 2024, 361(16): 107158.

[22] Sun P, Li J,  Yang Z,  et  al. Distributed  Super-Twisting  Sliding Mode Adaptive  Fault-Tolerant  Control  for  Multiple  UAVs  with  Prescribed Performance[C]//Chinese Conference on Swarm Intelligence and Coop- erative Control. Singapore: Springer Nature Singapore, 2023: 650-661.

[23] Al-Dhaifallah M, Al-Qahtani F M, Elferik  S,  et  al.  Quadrotor robust fractional-order  sliding mode control in unmanned  aerial vehicles for eliminating external disturbances[J]. Aerospace, 2023, 10(8): 665.

[24] Yu  Y,  Guo  J,  Chadli  M,  et  al.  Distributed  adaptive  fuzzy  formation control  of uncertain  multiple  unmanned  aerial  vehicles  with  actuator faults and switching topologies[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(3): 919-929.

[25] Wang H, Dong J. Robust fault-tolerant formation maneuver control for multiagent systems with mismatched disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024.

[26] Ahmadi K, Asadi D, Merheb A, et al. Active fault-tolerant control of quadrotor UAVs with nonlinear observer-based sliding mode control val- idated through hardware in the loop experiments[J]. Control Engineering Practice, 2023, 137: 105557.

[27] Ren  Y,  Sun  Y,  Liu  Z,  et  al.  Parameter-Optimization-Based  Adaptive Fault-Tolerant Control for a Quadrotor UAV Using Fuzzy Disturbance Observers[J]. IEEE Transactions on Fuzzy Systems, 2024.

[28] Qu Z. Matrix theory for cooperative systems[J]. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, 2009: 153- 193.

[29] Sun,  Z.,  Liang,  L.,  and  Gao,  W.,  “Disturbance  observer-based  fuzzy adaptive  optimal  finite-time  control  for  nonlinear  systems,”  Applied Mathematics  in  Science  and  Engineering,  Vol.  31, No.   1,  2023,  p. 2199211.

[30] Liu,  Y.,  and  Li,  L.,  “Adaptive  leader-follower  consensus  control  of multiple  flexible  manipulators   with  actuator  failures   and  parameter uncertainties,” IEEE/CAA Journal of Automatica Sinica, Vol.10, No. 4, 2023, pp. 1020–1031