
info@juzhikan.asia
1广西医科大学第三附属医院皮肤科,广西南宁,530031;
2广西医科大学,广西南宁,530021;
3上海鋆香悦医疗美容门诊部,上海,200041;
摘要:目的:探讨可预重组胶原蛋白修复敷料对于银屑病样皮损的治疗机制,以及为可预重组胶原蛋白修复敷料治疗银屑病的治疗机制提供理论依据。方法:将6周龄的BALA/c雄性小鼠24只,随机分为四组,每组各6只,除空白对照组外均应用5%咪喹莫特乳膏 (imiquimod, IMQ) 诱导银屑病样皮损小鼠模型,经过不同的处理之后通过采取银屑病皮损面积和疾病严重程度 (psoriasis area and severity index, PASI) 评分评估不同治疗组小鼠皮损严重程度,苏木素−伊红 (hematoxylin-eosin staining, HE) 染色观察皮肤病理学变化,MASSON染色观察小鼠皮肤纤维化程度,酶联免疫吸附法 (enzyme-linked immunosorbent assay, ELISA) 检测组织TNF-α、IL-23和IL-17A表达水平,qPCR检测Nrf2、keap1、NF-κB,ROS检测氧化应激,并且进行抗氧化酶SOD检测,综合对比评估各组小鼠的治疗效果。结果:结果显示,与IMQ组相比,可预重组胶原蛋白修复敷料可以显著减轻小鼠银屑病样皮损,降低PASI评分。同时通过HE染色和MASSON染色观察到可预重组胶原蛋白修复敷料可以减轻小鼠皮肤病理学变化及小鼠皮肤纤维化程度,ELISA检测可以观察到可预重组胶原蛋白修复敷料减少皮损处促炎细胞因子水平,RT-PCR检测分析结果显示可预重组胶原蛋白修复敷料可能通过调节Nrf2,keap1,NF-κB的mRNA表达水平发挥作用。结论:可预重组胶原蛋白修复敷料对银屑病具有良好的辅助治疗作用,其作用机制与抑制TNF-α,IL-23和IL-17A等促炎细胞因子水平及调节Nrf2,keap1,NF-κB的表达水平有关,可以有效改善BALB/c小鼠银屑病样皮肤炎症及皮肤纤维化。
关键词:重组胶原蛋白;银屑病;细胞因子;HE染色;MASSON染色
参考文献
[1]Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNWN. Psoriasis. The Lancet. 2021 Apr 3; 397(10281): 1301-1315.
[2]Armstrong AW, Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. The Journal of the American Medical Association. 2020 May 19; 323(19): 1945-1960.
[3]Kaufman BP, Alexis AF. Psoriasis in Skin of Color: Insights into the Epidemiology, Clinical Presentation, Genetics, Quality-of-Life Impact, and Treatment of Psoriasis in Non-White Racial/Ethnic Groups. American Journal of Clinical Dermatology. 2018 Jun; 19(3): 405-423.
[4]Tian D, Lai Y. The relapse of psoriasis: mechanisms and mysteries[J]. JID Innovations, 2022, 2(3): 100116.
[5]Blauvelt A, Chiricozzi A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clinical Reviews in Allergy & Immunology. 2018 Dec; 55(3): 379-390.
[6]Vičić M, Kaštelan M, Brajac I, Sotošek V, Massari LP. Current Concepts of Psoriasis Immunopathogenesis. International Journal of Molecular Sciences. 2021 Oct 26; 22(21): 11574.
[7]Liang Y, Wang Y, Peng A, Li J, Zhang K. Molecular mechanisms and drug therapy of metabolism disorders in psoriasis. Journal of Dermatological Treatment. 2024; 35(1): 2375580.
[8]Ren, J., Chen, X., Wang, Hy. et al. Gentiopicroside ameliorates psoriasis-like skin lesions in mice via regulating the Keap1-Nrf2 pathway and inhibiting keratinocyte activation. Acta Pharmacologica Sinica (2025).
[9]Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. The Lancet. 2007 Jul 21; 370(9583): 263-271.
[10]刘婧雯, 杨梅, 朱蕾. 羧胺三唑通过下调细胞因子和抗菌肽S100A7的表达改善实验性银屑病[J]. 药学学报, 2024, 59(11): 3085-3093.
[11]张悦, 贾元元, 孙秀丽, 等. 重组胶原蛋白在组织再生中的应用[J]. 中国生物医学工程学报, 2024, 43(06): 741-750.
[12]胡欢, 李云兰, 张蕻, 等. 重组胶原蛋白在生物医药方面的应用[J/OL]. 生物化学与生物物理进展, 1-27[2025-01-24].
[13]Li Y, Zhang G, Chen M, et al. Rutaecarpine inhibited imiquimod-induced psoriasis-like dermatitis via inhibiting the NF-κB and TLR7 pathways in mice. Biomedicine & Pharmacotherapy. 2019 Jan; 109: 1876-1883.
[14]Kagami S, Rizzo HL, Lee JJ, et al. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. Journal of Investigative Dermatology. 2010 May; 130(5): 1373-1383.
[15]Tonel G, Conrad C, Laggner U, et al. Cutting edge: A critical functional role for IL-23 in psoriasis. The Journal of Immunology. 2010 Nov 15; 185(10): 5688-5691.
[16]Friedrich M, Krammig S, Henze M, et al. Flow cytometric characterization of lesional T cells in psoriasis: intracellular cytokine and surface antigen expression indicates an activated, memory/effector type 1 immunophenotype. Archives of Dermatological Research. 2000; 292(10): 519-521.
[17]Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing [J]. Nature Reviews Immunology, 2014, 14: 585-600.
[18]Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis [J]. Journal of Investigative Dermatology, 2011, 131: 677-687.
[19]Menter A, Krueger GG, Paek SY, et al. Interleukin-17 and interleukin-23: a narrative review of mechanisms of action in psoriasis and associated comorbidities [J]. Dermatology and Therapy, 2021, 11: 385-400.
[20]Guo J, Zhang H, Lin W, et al. Signaling pathways and targeted therapies for psoriasis[J]. Signal Transduction and Targeted Therapy. 2023 Nov 27; 8(1): 437.
[21]Wagner EF, Schonthaler HB, Guinea-Viniegra J, et al. Psoriasis: what we have learned from mouse models [J]. Nature Reviews Rheumatology. 2010 Dec; 6(12): 704-714.
[22]Xiang Y, Wu X, Lu C, et al. An overview of acupuncture for psoriasis vulgaris, 2009-2014 [J]. Journal of Dermatological Treatment. 2017 May; 28(3): 221-228.
[23]尉莉, 郜玉玲, 赵旭传. 超氧化物歧化酶与皮肤病[J]. 中国麻风皮肤病杂志, 2007(9): 802-804.