
info@juzhikan.asia
福建师范大学,福建福州,350108;
摘要:糖尿病慢性感染伤口[1],尤其是糖尿病足溃疡(DFU),因其顽固的细菌生物膜和受损的愈合微环境(如高氧化应激、持续炎症和血管生成障碍),已成为临床治疗的重大难题。传统抗生素和清创疗法由于穿透性差、易产生耐药性且功能单一,难以有效应对这一挑战。近年来,智能纳米酶[2]材料的出现为这一领域带来了革命性的突破。纳米酶是一类具有酶样特性的纳米材料,作为天然酶的替代品在各种应用中显示出巨大的潜力。与传统材料不同,智能纳米酶不仅具有类似天然酶的高效催化活性,更能智能响应糖尿病伤口特有的微环境信号(如弱酸性、过高水平的过氧化氢和特定酶),实现精准、按需的治疗。本综述旨在阐述智能纳米材料的概念分类以及其杀菌机制与促进糖尿病感染伤口愈合机制。
关键词:智能纳米酶;糖尿病伤口;杀菌;伤口愈合
参考文献
[1]SHANG L, YU Y, JIANG Y, et al. Ultrasound-Augmented Multienzyme-like Nanozyme Hydrogel Spray for Promoting Diabetic Wound Healing [J]. ACS Nano, 2023, 17(16): 15962-77.
[2]HUANG Y, REN J, QU X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications [J]. Chem Rev, 2019, 119(6): 4357-412.
[3]BUS S A, VAN NETTEN J J, LAVERY L A, et al. IWGDF guidance on the prevention of foot ulcers in at-risk patients with diabetes [J]. Diabetes Metab Res Rev, 2016, 32 Suppl 1: 16-24.
[4]YU C, JIANG Z, LI G, et al. Hydrogel complex of natural actives for diabetic wound treatment [J].Materials & Design,2025,257:114515.
[5]LI G, LIU H, YI J, et al. Integrating Incompatible Nanozyme-Catalyzed Reactions for Diabetic Wound Healing [J]. Small, 2023, 19(10): 2206707.
[6]XING S, LIU B, HE L, et al. Nanozymes in infected wound therapy: catalytic mechanisms, rational design and combination therapy [J]. Acta Biomaterialia, 2025.
[7]GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nature Nanotechnology, 2007, 2(9): 577-83.
[8]WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes [J]. Chem Soc Rev, 2013, 42(14): 6060-93.
[9]LIANG M, YAN X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications [J]. Acc Chem Res, 2019, 52(8): 2190-200.
[10]朱青萌,陈燕.纳米酶:对天然酶的“模拟”和“超越”[J].化学教育(中英文),2025,46(14):1-7.
[11]KALELKAR P P, RIDDICK M, GARCíA A J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections [J]. Nature Reviews Materials, 2022, 7(1): 39-54.
[12]DHARMARAJA A T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria [J]. Journal of Medicinal Chemistry, 2017, 60(8): 3221-40.
[13]CHEN S, HUANG F, MAO L, et al. High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy [J]. Nano-Micro Letters, 2024, 17(1): 32.
[14]ZHANG W, NIU Q, CUI Y, et al. Copper-Doped Prussian Blue Nanozymes: Targeted Starvation Therapy Against Gram-Positive Bacteria via the ABC Transporter Inhibition [J]. Advanced Functional Materials, n/a(n/a): e07939.
[15]LIU X, YANG H, HAN Y, et al. Rational Coordination Modification of MOF-808-His-Tyr-Cu: Dual Oxidase and Peroxidase Mimics, and Catalytic Applications [J]. Inorg Chem, 2025, 64(28): 14445-54.
[16]XU B, NIU R, DENG R, et al. A Cu-Based Single-Atom Nanozyme Platform with Multi-Enzyme Simulated Activities for Immunotherapy of Prostate Cancer by Regulating Cholesterol Metabolism and Triggering Pyroptosis [J]. Advanced Functional Materials, 2024, 34(46): 2405265.
[17]ZHU J, ZENG Q, LIU Y, et al. Smart Nanosilver Strikes Twice: Precision Bacteria Killing Meets Autophagy-Boosted Healing for Infected Wounds [J]. Advanced Functional Materials, n/a(n/a): 2507797.
[18]HUANG Y, LI J, YU Z, et al. Elaborated Bio-Heterojunction With Robust Sterilization Effect for Infected Tissue Regeneration via Activating Competent Cell-Like Antibacterial Tactic [J].Advanced Materials, 2024, 36(48): 2414111.
[19]DU T, CAO J, XIAO Z, et al. Van-mediated self-aggregating photothermal agents combined with multifunctional magnetic nickel oxide nanoparticles for precise elimination of bacterial infections [J]. J Nanobiotechnology, 2022, 20(1): 325.
[20]LIANG Z, LIU W, WANG Z, et al. Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nanoparticles for synergistic elimination of methicillin-resistant Staphylococcus aureus and wound healing [J]. Acta Biomater, 2022, 143: 428-44.
[21]HUANG F, LU X, YANG Y, et al. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine [J]. Adv Sci (Weinh), 2023, 10(2): e2203308.
[22]XIAO X, ZHAO F, DUBOIS D B, et al. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers [J]. ACS Biomaterials Science & Engineering, 2024, 10(7): 4195-226.
[23]CHAO D, DONG Q, YU Z, et al. Specific Nanodrug for Diabetic Chronic Wounds Based on Antioxidase-Mimicking MOF-818 Nanozymes [J]. J Am Chem Soc, 2022, 144(51): 23438-47.
[24]LIU W S, LIU Y, GAO J, et al. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing [J]. Int J Nanomedicine, 2023, 18: 385-411.
[25]TAO N, LI H, DENG L, et al. A Cascade Nanozyme with Amplified Sonodynamic Therapeutic Effects through Comodulation of Hypoxia and Immunosuppression against Cancer [J]. ACS Nano, 2022, 16(1): 485-501.
[26]MALONE-POVOLNY M J, MALONEY S E, SCHOENFISCH M H. Nitric Oxide Therapy for Diabetic Wound Healing [J]. Adv Healthc Mater, 2019, 8(12): e1801210.
[27]ZHAO X, CHANG L, HU Y, et al. Preparation of Photocatalytic and Antibacterial MOF Nanozyme Used for Infected Diabetic Wound Healing [J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18194-208.
[28]赵雪丽.基因工程化仿生纳米酶系统的构建及其用于改善HCM心肌纤维化的研究[D],2024.