欢迎访问新加坡聚知刊出版有限公司官方网站
65 84368249info@juzhikan.asia
脑小血管病患者血清OPN、MIF水平与认知功能障碍相关性的研究进展
  • ISSN:3029-2816(Online)3029-2808(Print)
  • DOI:10.69979/3029-2808.25.08.054
  • 出版频率:月刊
  • 语言:中文
  • 收录数据库:ISSN:https://portal.issn.org/ 中国知网:https://scholar.cnki.net/journal/search

脑小血管病患者血清OPNMIF水平与认知功能障碍相关性的研究进展
洪晓涛 王辰*

佳木斯大学附属第一医院神经内科,黑龙江省佳木斯,154000;

摘要:脑小血管疾病(CSVD)是常见的脑血管疾病之一,也是引起血管性认知功能障碍(VCI)和脑卒中的重要原因。其发病病因和机制尚未完全明确,考虑与炎症反应密切相关。骨桥蛋白(OPN)与巨噬细胞迁移抑制因子(MIF)是多功能炎症因子,被认为可能与慢性脑灌注不足及认知障碍发生发展相关。现从脑小血管病的发病病因机制,OPN及MIF 参与脑损伤及认知障碍的机制等方面出发,对小血管病患者血清OPN 、MIF水平与认知功能障碍相关性研究进展进行综述。

关键词:脑小血管病;认知功能障碍;骨桥蛋白;巨噬细胞迁移抑制因子

参考文献

[1]Markus H S, de Leeuw F E. Cerebral small vessel disease: recent advances and future directions[J]. International Journal of Stroke, 2023, 18(1): 4-14.

[2]Duering M, Biessels G J, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease—advances since 2013[J]. The Lancet Neurology, 2023, 22(7): 602-618.

[3]Ghare S, Gardener H, Ariko T, et al. Osteopontin is associated with dementia in the presence of cerebral small vessel disease[J]. Cerebrovascular Diseases, 2024, 53(4): 495-500.

[4]Zhao J, Wang X, Li Q, et al. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease[J]. Frontiers in Aging Neuroscience, 2023, 15: 1083818.

[5]Litak J, Mazurek M, Kulesza B, et al. Cerebral small vessel disease[J]. International journal of molecular sciences, 2020, 21(24): 9729.

[6]Blevins B L, Vinters H V, Love S, et al. Brain arteriolosclerosis[J]. Acta neuropathologica, 2021, 141: 1-24.

[7]Hannawi Y. Cerebral small vessel disease: a review of the pathophysiological mechanisms[J]. Translational Stroke Research, 2024, 15(6): 1050-1069.

[8]Burtscher J, Mallet R T, Burtscher M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection?[J]. Ageing research reviews, 2021, 68: 101343.

[9]Staffaroni A M, Cobigo Y, Elahi F M, et al. A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure[J]. Human brain mapping, 2019, 40(12): 3522-3533.

[10]Alahmari A. Blood‐brain barrier overview: Structural and functional correlation[J]. Neural plasticity, 2021, 2021(1): 6564585.

[11]Sun Z, Gao C, Gao D, et al. Reduction in pericyte coverage leads to blood–brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion[J]. Fluids and Barriers of the CNS, 2021, 18(1): 21.

[12]Lee D H, Lee E C, Park S W, et al. Pathogenesis of Cerebral Small Vessel Disease: Role of the Glymphatic System Dysfunction[J]. International Journal of Molecular Sciences, 2024, 25(16): 8752.

[13]Rasmussen M K, Mestre H, Nedergaard M. Fluid transport in the brain[J]. Physiological reviews, 2022, 102(2): 1025-1151.

[14]Zhang W, Zhou Y, Wang J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J]. Neuroimage, 2021, 238: 118257.

[15]Cifù A, Janes F, Mio C, et al. Brain endothelial cells activate neuroinflammatory pathways in response to early cerebral small vessel disease (CSVD) patients’ plasma[J]. Biomedicines, 2023, 11(11): 3055.

[16]Li T, Huang Y, Cai W, et al. Age-related cerebral small vessel disease and inflammaging[J]. Cell death & disease, 2020, 11(10): 932.

[17]中国痴呆与认知障碍指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(一):痴呆及其分类诊断标准[J]. 中华医学杂志,2018,98(13):965-970.

[18]Peng D, Geriatric Neurology Group, Chinese Society of Geriatrics, Clinical Practice Guideline for Cognitive Impairment of Cerebral Small Vessel Disease Writing Group, et al. Clinical practice guideline for cognitive impairment of cerebral small vessel disease[J]. Aging Medicine, 2019, 2(2): 64-73.

[19]Inoue Y, Shue F, Bu G, et al. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer’s disease[J]. Molecular neurodegeneration, 2023, 18(1): 46.

[20]Weber G F. The phylogeny of osteopontin—analysis of the protein sequence[J]. International Journal of Molecular Sciences, 2018, 19(9): 2557.

[21]Wang L, Niu X. Immunoregulatory roles of Osteopontin in diseases[J]. Nutrients, 2024, 16(2): 312.

[22]Lopes K P, Yu L, Shen X, et al. Associations of cortical SPP1 and ITGAX with cognition and common neuropathologies in older adults[J]. Alzheimer's & Dementia, 2024, 20(1): 525-537.

[23]Manukjan N, Majcher D, Leenders P, et al. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood–brain barrier impairment[J]. Acta neuropathologica communications, 2023, 11(1): 128.

[24]Hu Z, Xuan L, Wu T, et al. Taxifolin attenuates neuroinflammation and microglial pyroptosis via the PI3K/Akt signaling pathway after spinal cord injury[J]. International Immunopharmacology, 2023, 114: 109616.

[25]Xin D, Li T, Chu X, et al. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression[J]. Pharmacological Research, 2021, 164: 105322.

[26]Chai Y L, Chong J R, Raquib A R, et al. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment[J]. Scientific reports, 2021, 11(1): 4010.

[27]Qiu Y, Shen X, Ravid O, et al. Definition of the contribution of an Osteopontin-producing CD11c+ microglial subset to Alzheimer’s disease[J]. Proceedings of the National Academy of Sciences, 2023, 120(6): e2218915120.

[28]Osipyan A, Chen D, Dekker F J. Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation[J]. Drug discovery today, 2021, 26(7): 1728-1734.

[29]Jankauskas S S, Wong D W L, Bucala R, et al. Evolving complexity of MIF signaling[J]. Cellular signalling, 2019, 57: 76-88.

[30]Park H, Kam T I, Peng H, et al. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson’s disease[J]. Cell, 2022, 185(11): 1943-1959. e21.

[31]Matejuk A, Benedek G, Bucala R, et al. MIF contribution to progressive brain diseases[J]. Journal of Neuroinflammation, 2024, 21(1): 8.

[32]Shi Y, Deng J, Mao H, et al. Macrophage migration inhibitory factor as a potential plasma biomarker of cognitive impairment in cerebral small vessel disease[J]. ACS omega, 2024, 9(13): 15339-15349.