东南大学,江苏省南京市,210000;
摘要:器官芯片越来越多地应用于心血管病理生理学研究中作为传统体外细胞培养的替代品。微流控心脏芯片可以概括心脏组织水平的功能以及细胞和细胞外基质之间的通信,还可以进行更高通量的研究,有利于药物筛选。本篇综述回顾了心脏芯片制造,心肌细胞功能化,以及药物筛选和疾病建模的临床应用方面的最新进展和挑战。并在最后总结了心脏器官芯片平台的当前挑战和未来前景。
关键词:器官芯片;心脏疾病
参考文献
[1]Lozano, R., et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012. 380(9859): p. 2095-2128.
[2]Pampaloni, F., E.G. Reynaud, and E.H.K. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology, 2007. 8(10): p. 839-845.
[3]Kramer, N., et al., <i>In vitro</i> cell migration and invasion assays. Mutation Research-Reviews in Mutation Research, 2013. 752(1): p. 10-24.
[4]Ronaldson-Bouchard, K. and G. Vunjak-Novakovic, Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell, 2018. 22(3): p. 310-324.
[5]Park, J., et al., Heart-on-Chip for Combined Cellular Dynamics Measurements and Computational Modeling Towards Clinical Applications. Annals of Biomedical Engineering, 2022. 50(2): p. 111-137.
[6]Ding, C.Z., et al., Biomedical Application of Functional Materials in Organ-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 2020. 8.
[7]Plouffe, B.D., et al., Controlled capture and release of cardiac fibroblasts using peptide-functionalized alginate gels in microfluidic channels. Lab on a Chip, 2009. 9(11): p. 1507-1510.
[8]Kim, D.H., et al., Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sensors and Actuators B-Chemical, 2006. 117(2): p. 391-400.
[9]Zhang, B.Y., et al., Advances in organ-on-a-chip engineering. Nature Reviews Materials, 2018. 3(8): p. 257-278.
[10]Ugolini, G.S., et al., On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnology and Bioengineering, 2016. 113(4): p. 859-869.
[11]Dasi, L.P., et al., FLUID MECHANICS OF ARTIFICIAL HEART VALVES. Clinical and Experimental Pharmacology and Physiology, 2009. 36(2): p. 225-237.
[12]Dvir, T., et al., Nanowired three-dimensional cardiac patches. Nature Nanotechnology, 2011. 6(11): p. 720-725.
[13]Parsa, H., B.Z. Wang, and G. Vunjak-Novakovic, A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. Lab on a Chip, 2017. 17(19): p. 3264-3271.
[14]Guo, Y.X. and W.L.T. Pu, Cardiomyocyte Maturation New Phase in Development. Circulation Research, 2020. 126(8): p. 1086-1106.
[15]Mourad, O., et al., Modeling Heart Diseases on a Chip: Advantages and Future Opportunities. Circulation Research, 2023. 132(4): p. 483-497.