中山大学附属第八医院,广东深圳,518000;
摘要:生命早期饥饿暴露对成年期心血管健康的影响已成为发育起源研究的重要领域。基于健康与疾病的发育起源理论,胎儿期或儿童期经历严重营养不良不仅会显著增加暴露人群成年后心血管疾病风险,并且可将表观遗传调控和代谢编程作为一种可能的跨代载体对后代心血管及代谢健康产生跨代影响。本文旨在综合阐述生命早期饥饿暴露对心血管与代谢健康跨代影响的流行病学研究和相关机制研究的最新进展,以期为预防生命早期营养不良、减少心血管与代谢疾病在多代间的发生提供科学依据,强调需要将饥饿暴露的家族史纳入心血管风险评估体系,并建立多代健康档案以实现早期干预。未来的研究应整合跨代队列研究和多组学技术,揭示关键的表观遗传通路,开发阻断代谢风险跨代传递的精准策略。
关键词:早期饥饿暴露;心血管与代谢;跨代;表观遗传
参考文献
[1]Painter RC, Osmond C, Gluckman P, et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life[J]. BJOG. 2008;115(10):1243-1249.
[2]Veenendaal MVE, Painter RC, de Rooij SR, et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine[J]. BJOG. 2013;120(5):548-553.
[3]Yao WY, Li L, Jiang HR, et al. Transgenerational associations of parental famine exposure in early life with offspring risk of adult obesity in China[J]. Obesity (Silver Spring). 2023;31(1):279-289.
[4]Li J, Liu S, Li S, et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China[J]. Am J Clin Nutr. 2017;105(1):221-227.
[5]Yao WY, Yu YF, Li L, Xu WH. Exposure to Chinese famine in early life and height across 2 generations: a longitudinal study based on the China Health and Nutrition Survey. Am J Clin Nutr[J]. 2024;119(2):433-443.
[6]Jiang W, Han T, Duan W, et al. Prenatal famine exposure and estimated glomerular filtration rate across consecutive generations: association and epigenetic mediation in a population-based cohort study in Suihua China[J]. Aging (Albany NY). 2020;12(12):12206-12221.
[7]Tolkunova K, Usoltsev D, Moguchaia E, et al. Transgenerational and intergenerational effects of early childhood famine exposure in the cohort of offspring of Leningrad Siege survivors[J]. Sci Rep. 2023;13(1):11188.
[8]Pinheiro AR, Salvucci ID, Aguila MB, et al. Protein restriction during gestation and/or lactation causes adverse transgenerational effects on biometry and glucose metabolism in F1 and F2 progenies of rats[J]. Clin Sci (Lond), 2008, 114(5): 381-392.
[9]Diniz F, Edgington-Giordano F, Ngo NYN, et al. Morphometric analysis of the intergenerational effects of protein restriction on nephron endowment in mice[J]. Heliyon, 2024, 10(20): e39552.
[10]Ushida T, Cotechini T, Protopapas N, et al. Aberrant inflammation in rat pregnancy leads to cardiometabolic alterations in the offspring and intrauterine growth restriction in the F2 generation[J]. J Dev Orig Health Dis, 2022, 13(6): 706-718.
[11]Adams RCM, Smith C. Chronic gestational inflammation: Transfer of maternal adaptation over two generations of progeny[J]. Mediators Inflamm, 2019, 2019: 9160941.
[12]Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific[J]. Hum Mol Genet, 2009, 18(21): 4046-4053.
[13]Tang SB, Zhang TT, Yin S, et al. Inheritance of perturbed methylation and metabolism caused by uterine malnutrition via oocytes[J]. BMC Biol, 2023, 21(1): 43.
[14]Rechavi O, Houri-Ze'evi L, Anava S, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans[J]. Cell, 2014, 158(2): 277-287.
[15]Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice[J]. Nat Neurosci. 2014 May;17(5):667-9.
[16]Greer EL, Maures TJ, Ucar D,et al. Brunet A. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans[J]. Nature. 2011 Oct 19;479(7373):365-71.
[17]Mao Z, Xia W, Huo W ,et al. Pancreatic impairment and Igf2 hypermethylation induced by developmental exposure to bisphenol A can be counteracted by maternal folate supplementation[J]. J Appl Toxicol. 2017 Jul;37(7):825-835.