人工智能技术在数字乳腺断层摄影的研究进展
李培榕
福建师范大学计算机与网络空间安全学院,福建福州,350117;
摘要:乳腺癌是女性中最常见的癌症类型,早期检测对降低死亡率至关重要。数字乳腺断层摄影(DBT)作为一 种先进的医学影像技术,通过三维成像大幅提升了病灶定位的精确度和诊断效果。然而,DBT 的解读过程耗时较 长,亟需进一步优化。近年来,人工智能技术已在医学影像领域得到广泛应用。本文综述了人工智能在 DBT 辅助 诊断中的应用,重点讨论了迁移学习在 DBT 中的实践、基于半监督学习的病灶识别方法,以及 DBT 图像分析的新 兴研究方向。本文还分析了当前技术面临的挑战,并展望了未来的发展趋势,强调未来的 AI 系统应整合多源数 据,从而提高预测的准确性和临床应用的普适性。
关键词:人工智能,乳腺癌,钼靶图像
参考文献
[1]Loizidou, K., Elia, R., & Pitris, C. (2023). Computer-aided breast cancer detection and classification in mammography: A comprehensive review. Comput Biol Med, 153, 106554
[2]Samala, R. K., Chan, H.-P., Hadjiiski, L., Helvie, M. A., Wei, J., & Cha, K. (2016). Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Med Phys, 43(12), 6654-6666
[3]Mendel, K., Li, H., Sheth, D., & Giger, M. (2019). Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography. Acad Radiol, 26(6), 735-743
[4]Yousefi, M., Krzy?ak, A., & Suen, C. Y. (2018). Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning. Comput Biol Med, 96, 283-293
[5]Lotter, W., Diab, A. R., Haslam, B., Kim, J. G., Grisot, G., Wu, E.,...Gregory Sorensen, A. (2021). Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nature Medicine, 27(2), 244-249
[6]Park, J., Ch??dowski, J., Jastrz?bski, S., Witowski, J., Xu, Y., Du, L.,...Geras, K. J. (2024). An Efficient Deep Neural Network to Classify Large 3D Images With Small Objects. IEEE Transactions on Medical Imaging, 43(1), 351-365
[7]D Palma, G., Bloch, I., & Muller, S. (2014). Detection of masses and architectural distortions in digital breast tomosynthesis images using fuzzy and a contrario approaches. Pattern Recognition, 47(7), 2467-2480
[8]Hassan, L., Abdel-Nasser, M., Saleh, A., & Puig, D. (2024). Classifying Breast Tumors in Digital Tomosynthesis by Combining Image Quality-Aware Features and Tumor Texture Descriptors. Machine Learning and Knowledge Extraction, 6(1), 619-641
[9]Li, X., Qin, G., He, Q., Sun, L., Zeng, H., He,Z.,...Zhou, L. (2020). Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Eur Radiol, 30(2), 778-788
[10]Kassis, I., Lederman, D., Ben-Arie, G., Giladi Rosenthal, M., Shelef, I., & Zigel, Y. (2024). Detection of breast cancer in digital breast tomosynthesis with vision transformers. Scientific Reports, 14(1), 22149
[11]Teuwen, J., Moriakov, N., Fedon, C., Caballo, M., Reiser, I., Bakic, P.,...Sechopoulos, I. (2021). Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Med Image Anal, 71,102061
[12]O. Oladimeji, H. Ayaz, I. McLoughlin and S. Unnikrishnan, "Lightweight Deep Learning for Breast Cancer Diagnosis Based on Slice Selection Techniques," 2023 31st Irish Conference on Artificial Intelligence and Cognitive Science (AICS), Letterkenny, Ireland, 2023, pp. 1-4
[13]Konz,
N.,Dong, H., & Mazurowski,M.A.(2023).Unsupervised anomaly
localization in high-resolution breast scans using deep pluralistic
image completion. Med Image Anal, 87,102836