


# 探索非学历人工智能培训的未来教育趋势

吴梦颀

江西开放大学, 江西南昌, 330025;

摘要:本文探讨了非学历教育中引入人工智能培训的重要性,分析了其对创新创业教育的推动作用,并提出了课程设计、师资队伍建设、平台建设及评估反馈等实践路径,旨在为非学历教育引入 AI 提供理论指导和实践建议。

**关键词:** 非学历教育; 人工智能培训; 创新创业教育 DOI:10.69979/3029-2735.24.10.044

## 引言

随着社会的快速发展,非学历教育成为终身学习体系的关键部分,其灵活、实用、针对性强的特点倍受欢迎,但传统的教学模式存在资源、方法和评估上的局限。近年来,人工智能技术以其强大能力在教育领域引发变革,为非学历教育带来新动力,推动了AI 在非学历教育中的应用,提供个性化学习资源和辅导。本文将分析非学历与创新创业教育的现状、AI 的应用优势、对教育的推动作用及社会影响和未来趋势,为非学历教育引入AI 提供理论和实践指导,促进创新创业教育的深入发展。

#### 1 非学历教育与创新创业教育的现状

#### 1.1 非学历教育概述

非学历教育是不授予学位或证书的教育活动,涵盖 职业技能培训、行业特定培训等。其特点包括灵活多样、 实用性强、开放终身及成本效益高,它能快速适应市场 需求,注重实际操作能力,适合各年龄段和背景人士, 包括在职员工、创业者、终身学习者及特定行业从业者 等。在职员工借此增强职场竞争力,创业者和自由职业 者获取所需技能,终身学习者追求自我提升,特定行业 从业者更新专业知识。非学历教育以其独特优势,成为 提升技能和知识的重要途径。

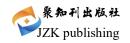
#### 1.2 创新创业教育的重要性

创新创业教育在当今社会至关重要,其影响深远, 涉及经济、社会及教育多个层面。经济上,它培养创新 精神与创业能力,推动经济增长、产业升级,并增强国 际竞争力。社会上,它鼓励创业,增加就业机会,形成 创业文化,同时为贫困地区和弱势群体提供脱贫机会, 减少不平等。教育上,它推动高等教育改革,提升教学 质量,促进产学研结合,培养高素质创新人才。

## 1.3 当前存在的问题

创新创业教育对社会经济发展至关重要,但在我国面临诸多问题。首要的是教育资源分配不均,高校与地区间差异明显,影响教育质量和学生机会。其次,教学方法传统,与市场需求脱节,实践机会有限,制约教育发展。再者,创新实践机会不足,尽管有高校尝试改革,但整体而言,学生参与度低,影响能力培养和价值认识。这些问题亟待解决,以推动创新创业教育更好发展,满足未来社会需求。

## 2 人工智能技术在非学历教育中的应用


人工智能技术在非学历教育中的应用正逐步深化。 通过学习前后调研数据的对比,我们发现,在非学历培训中引入AI技术后,参与者的技能显著提升,尤其在数据分析、自动化办公等方面;同时,他们的学习兴趣和工作满意度也明显增强。AI工具的应用不仅提高了学生的创作效率和文案质量,还激发了他们的原创思考。 多数学生表示愿意在未来继续使用AI工具辅助创作。

展望未来,人工智能技术在非学历教育中的应用前景广阔。它可以提供个性化的学习体验,满足学习者的多样化需求;作为教师的智能助手,AI 能高效管理课堂并给出针对性教学反馈;在职业培训中,AI 技术模拟真实工作场景,助力学员技能提升;此外,AI 还支持终身学习,为学习者职业生涯的持续进步提供动力和资源。

### 3 人工智能培训对创新创业教育的推动作用

## 3.1 提升技术能力

人工智能培训在创新创业教育中扮演着关键角色, 尤其在提升技术能力方面至关重要。通过这一培训,学 生得以掌握前沿技术,为创新创业奠定坚实基础,并推 动教育体系革新。人工智能技术的迅猛发展为高校带来 了新机遇,培训成为提升学生技能的有效途径,涵盖智



能分析、虚拟创业场景构建等,助力学生解决实际问题, 激发创新思维。

实践中,"人工智能+X"培养模式展现了显著成效,跨学科融合拓宽了学生视野,增强了综合能力。同时,人工智能技术的应用,如信息资源整合、虚拟场景创建等,提高了教学效率,强化了实践能力。校企合作、产教融合进一步推动了产学研用一体化,使学生在真实环境中历练,提升创业成功率。

然而,挑战依然存在,包括技术研发成熟度不足、 应用场景有限等。因此,高校需加速技术研发,打破数 据壁垒,深化场景融合,以充分利用人工智能技术推动 创新创业教育发展。

## 3.2 激发创新思维

在创新创业教育中,人工智能培训的引入对激发学生创新思维至关重要。它主要通过三大方面发挥作用:

首先,人工智能技术为学生提供了广泛的学习资源和实践平台,使他们能探索未知,突破传统限制。例如,利用 AI 进行数据挖掘,学生能发现数据背后的规律,提出创新方案,这既锻炼了动手能力,又激发了探索欲和创新思维。

其次,通过个性化学习和智能环境的创设,AI 帮助学生深化知识理解与应用。个性化学习让每个学生都能根据自身情况获得定制资源,精准教学助力深入挖掘兴趣点,形成独特思维。智能环境如虚拟实验室则提供了便捷的学习工具,促进理论与实践结合,进一步提升创新思维。

最后,AI 培训还通过培养批判性思维和解决问题能力间接激发创新。个性化学习体验和互动模拟拓宽了学生视野,鼓励他们质疑、反思,培养独立思考。这些能力是创新思维的关键,帮助学生多角度审视问题,提出新颖解决方案。

# 3.3 优化教育资源配置

在创新创业教育中,人工智能培训对优化教育资源 配置至关重要。它提升了资源利用效率,推动了教育公 平与跨学科融合。

首先,通过大数据分析,AI 实现了教育资源的精准 投放。智能平台依据学生学习情况推荐个性化课程,既 满足个体需求,又提高资源使用的针对性。

其次,AI 优化了教学资源配置,提高了效率。智慧 课堂等环境使资源能动态调整,适应不同场景。智能化 管理减少了浪费,提升了教育投资回报。

再者, AI 促进了跨学科融合, 为创新教育提供多元

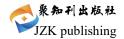
化路径。结合新工科等领域,课程体系得以创新,学生 能在广泛知识中探索,培养综合素养。

同时,AI 在提升教育质量上发挥重要作用。智能分析系统实时监控学习,及时解决问题。模拟创新环境,提供真实体验,增强教育实效性。

最后,AI 助力教育资源公平共享。在职业教育等领域,通过共享优质资源和个性化路径,缩小城乡、区域差距,促进社会公平和谐发展。

## 3.4 促进产学研结合

人工智能培训在促进创新创业教育的产学研结合方面作用显著。它搭建了校企合作桥梁,使企业获取科研成果,学生获得实践机会,提升实践能力。同时,AI技术加速了创新成果迭代,通过数据分析等手段,企业精准把握市场,高校调整研究方向,形成创新良性循环。此外,AI培训促进跨学科、跨行业交流,拓宽创新视野,丰富教学资源,培养跨界思维。总之,人工智能培训通过强化合作、加速创新、促进交流等路径,有效推动产学研深度融合,为创新创业教育注入活力,提升实践能力与成功率,为社会经济发展提供动力。


## 4 非学历教育中人工智能培训的实践路径

## 4.1 课程设计

在非学历教育中,人工智能培训的课程设计展现了丰富创新。关键策略包括:一是跨学科融合,如"人工智能+X"模式,结合历史、艺术等多学科,拓宽视野,培养创新思维。二是市场需求导向,调研行业趋势,确保课程实用,满足职业发展需求。三是个性化学习路径,利用大数据和 AI 技术定制学习计划,提高学习动力。四是实践导向教学,通过企业合作项目,培养解决问题和团队协作能力。五是运用 AI 工具辅助教学,如智能教学系统、VR/AR 技术,提供沉浸式学习环境。六是持续更新课程内容,紧跟技术前沿,确保学生掌握最新知识。这些策略旨在提升教学质量,培养符合市场需求的高素质 AI 人才,为创新教育提供有力支持。

#### 4.2 师资队伍建设

在非学历教育中,人工智能培训的师资队伍建设至 关重要。首先,需设计系统化培训课程,基于 TPACK 框 架提升教师技术能力,确保教师熟练掌握 AI 核心技术。 其次,利用智能技术辅助课堂教学,通过数据驱动精准 测评,提高教学效果,丰富教学资源。同时,构建智能 培训环境,线上线下结合,支持教师精准培训,促进教 学实践融合。培训体系应分级设计,满足教师个性化需



求,创新培训方法提升能力。此外,加强培训效果评价,利用智能技术监测,确保培训有效,并根据反馈调整内容。最后,多方协作与政策支持是关键,教育行政部门、学校、科研机构等共同参与,制定政策推动发展。综上所述,通过系统化培训、智能技术辅助、智能培训环境、分级培训、效果评价及多方协作等措施,可有效提升非学历教育中 AI 培训师资队伍的整体素质和教学能力,为高质量发展提供保障。

### 4.3 平台建设

在非学历教育中,平台建设对人工智能培训至关重 要。构建基于人工智能的在线学习平台是基础,它融合 多学科知识, 通过智能功能为学习者提供个性化支持。 例如, 吉林开放大学的技术验证平台就成功地为终身教 育提供了高水平服务。平台需提供灵活多样的学习资源, 如前沿技术课程内容和动态网络社区资源,以满足不同 学习者需求。同时,增强互动机会是提高在线学习效果 的关键,智能化教学系统可实现如 ChatGPT 等工具的交 互,提升学习者参与度。人工智能技术在教学中的应用, 如虚拟现实交互平台、智能教育助理等, 能显著提升教 学效果。此外,建设实践创新平台对培养学生实践和创 新能力至关重要, 开放式实训平台通过资源共享和智能 化管理,推动人工智能培训发展。综上所述,非学历教 育中的人工智能培训应通过构建智能化平台、提供丰富 资源、增强互动和利用人工智能技术,满足社会对高素 质人工智能人才的需求。

## 4.4 评估与反馈

在非学历教育中,评估与反馈对人工智能培训至关重要。利用 AI 技术,可建立科学评估体系,实现自适应学习、自动评分及实时反馈,如手术技能训练中的智能指导系统,能即时纠错,提升技能。多维度评估和过程化考核相结合,不仅关注学习成果,也重视过程、态度等,全面客观评价培训效果。AI 还能提供个性化反馈,基于数据分析帮助教师精准施教,调整策略。结合增强现实(AR)技术,让学生在虚拟环境中实操,深化 AI 理解。未来需构建发展性教育模式,持续评估反馈,促进学生全面发展。综上所述,非学历教育中的人工智能培训,通过 AI 评估反馈、科学体系、个性化辅导、AR 技术及应用发展性教育模式,可最大化培训效果,推动教育创新,提升学生技能与综合素质。

### 5 社会影响与未来展望

# 5.1 推动社会创新创业

非学历教育中引入人工智能培训,对社会创新创业影响深远。它跨学科教学,丰富学生创新思维与实践机会,培养创新及问题解决能力,助力识别市场机遇,开发创新产品。同时,促进产学研用一体化,构建"AI+跨学科"课程体系,打造创新教育教学空间,加强校企合作,推动科技成果转化。此举培养大批创新人才,推动新技术、业态、模式涌现,成为经济发展重要力量。展望未来,随着 AI 技术发展,培训内容将更丰富,方式更灵活,政策支持与社会认知提升下,AI 培训将更广范围推广,为社会创新创业提供更强智力与人才支持。总之,非学历教育中 AI 培训是推动创新创业的有效途径,未来作用将更加凸显。

### 5.2 促进产业升级


非学历教育中引入人工智能培训,对产业升级促进显著,主要体现在推动传统产业转型和催生新经济增长点两方面。一方面,劳动者通过培训掌握 AI 技术,助力传统产业智能化改造,如制造业效率提升、农业服务业流程自动化,增强了竞争力。另一方面,AI 技术催生智慧医疗、交通、金融等新兴领域,创造就业机会,促进经济繁荣。此外,AI 培训改善劳动力市场结构,提升就业质量,培养高技能人才,缓解结构性失业。展望未来,随着技术进步,AI 培训内容将更丰富,方式更灵活,为产业升级提供坚实支撑。政府、企业、教育机构需加强合作,推动 AI 培训发展,实现技术广泛应用和社会效益最大化。

## 5.3 面临的挑战与对策

非学历教育中引入人工智能培训面临数据安全、技术伦理、资源不均等挑战。数据安全方面,需建立健全法规,采用加密技术确保隐私,定期审计防漏洞。技术伦理上,应建立伦理准则,增强算法透明度,设立监督机构保公正。教育资源不均问题,需政府加大投入,推动资源共享,鼓励企业参与公益。通过加强数据保护、推动伦理建设、促进资源均衡,可充分发挥 AI 培训优势,为学员提供个性化高效学习体验,促进社会公平和谐发展。

## 6 结论

本文探讨非学历教育中引入人工智能培训的影响与展望。AI 技术促进产业升级,推动传统产业智能化,催生智慧医疗、交通、金融等新兴领域,注入经济活力,创造就业机会。同时,面临数据安全、技术伦理、资源不均等挑战,需加强保护、伦理建设、均衡分配。展望



未来,AI 培训将提升技能、推动教育公平与终身学习。 实现此愿景需全社会共力,政府、学校、企业等应携手 合作。非学历教育中引入AI 培训机遇与挑战并存,科 学合理规划可充分利用其优势,为社会进步贡献力量。

## 参考文献

- [1] 冯锐, 孙佳晶, 孙发勤. 人工智能在教育应用中的伦理风险与理性抉择[J]. 远程教育杂志, 2020.
- [2]冯薇,吴哲宇,李怡为."人工智能+教育"深度融合的理论探索与创新启示——基于文献计量学的研究[J].中国成人教育,2023.
- [3]丁道勤. 生成式人工智能训练阶段的数据法律问题 及其立法建议 附视频[J]. 行政法学研究,2024.
- [4]清华大学法学院. 生成式人工智能中个人信息保护的全流程合规体系构建[J]. 华东政法大学学报, 2024.
- [5] 倪琴, 刘志, 郝煜佳等. 智能教育场景下的算法歧视: 潜在风险、成因剖析与治理策略[J]. 中国电化教育, 20 22.
- [6]姜岩,刘峰. "ChatGPT+教育": 弥合教育数字鸿沟的机遇和挑战 附视频[J]. 大学教育,2024.
- [7] 北京理工大学人文与社会科学学院. 人工智能时代的创新创业教育: 价值旨归、变革逻辑与实践路径[J]. 清华大学教育研究, 2023.
- [8]谢卫群,沈文敏,黄晓慧.人工智能加速赋能实体经济.人民日报,2022.
- [9] Jingfang Xia, Yao Ge et al. "The Auxiliary Role of Artificial Intelligence Applications in Mitigating the Linguistic, Psychological, and Educational Challenges of Teaching and Learn ing Chinese Language by non-Chinese Students."

The International Review of Research in Open and Distributed Learning (2024).

- [10] 科林·德·拉·伊格拉. 重新思考人工智能给教育带来的冲击和影响——人工智能与未来教育国际前沿研究专栏导读[J]. 中国教育信息化,2023.
- [11] 胡展硕. 人工智能时代创新创业教育机遇、风险及应对策略[J]. 产业创新研究, 2023.
- [12] 李利荣. "新工科"建设背景下基于项目化培训的

科技型企业员工创新创业能力培养研究[J].企业科技与发展,2023.

- [13] 裘洪梅, 丁宁, 庞雨滨等. 浅论人工智能在大学生创新创业备赛训练中的作用[J]. 大连大学学报, 2023.
- [14] 庄佳, 陆庆玲, 江一山等. 人工智能背景下高校多场景融合教学探索与应用——以创新创业理论与实践课程为例 附视频[J]. 信息系统工程, 2024.
- [15] 郝兴伟,周元峰,任立英.面向非人工智能专业的人工智能教育探索与实践 附视频[J].中国大学教学,2024.
- [16] Made Ayu Chandra Dewi Harika Putri, Made R atih Nurmalasari. "Artificial Intelligence-Ent repreneurship Future Research and Opportunities for New Business Model." TIERS Information T echnology Journal (2024).
- [17] 道阻且长,行而不辍 中国人工智能产业研究报告 (V). 2023 艾瑞咨询 3 月研究报告会论文集,2023.
- [18] 北京师范大学远程教育研究中心/互联网教育智能技术及应用国家工程实验室. 任重道远: 人工智能教育应用的困境与突破[J]. 开放教育研究, 2019.
- [19] 三亚学院信息与智能工程学院. 基于过程化考核的人工智能专业课程教学模式改革路径. 2023 年第三届高校教育发展与信息技术创新国际学术会议论文集(第二卷),2023.
- [20] 许莉, 胡明, 宋玲琪. 基于"互联网+"的非学历继续教育培训质量评价原则与创新策略[J]. 当代继续教育, 2019.
- [21] 李珩, 黄璐, 吴小志. 人工智能赋能高等教育路径探索: 重庆大学的实践与启示[J]. 高等建筑教育, 202
- [22] 翟雪松, 孙玉琏, 沈阳等. "虚拟现实+触觉反馈"对学习效率的促进机制研究——基于 2010-2021 年的元分析[J]. 远程教育杂志, 2021.

作者简介:吴梦颀,1989年4月,女,汉族,江西, 江西开放大学,硕士研究生,讲师,主要研究方向: 非学历教育、创新创业教育、人工智能、乡村振兴 项目基金:《"双创"理念下电子商务专业助力乡村 振兴的教育模式研究》江西省教育科学"十四五"规 划 2022年度青年专项课题,编号:22GZQN046