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脉冲电沉积制备纳米晶镁合金涂层的显微组织演变与耐

蚀机制研究

谢中柱

太原学院，山西太原，030032；

摘要：镁合金凭借低密度（1.74g/cm³）与高比强度优势，在航空航天、汽车轻量化及电子封装领域具有不可替

代的应用价值，但其 2.37V（vsSHE）的低标准电极电位导致其在潮湿、含盐等环境中易发生严重腐蚀，极大限

制了工程应用。
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1 背景与意义

1.1 镁合金在工业领域的应用现状与挑战

镁合金的轻量化特性为各行业“节能降耗”提供了

核心支撑：在航空航天领域，每减重 1kg 可使飞行器燃

油效率提升 0.7%，波音 787 客机采用镁合金构件后整

机减重约 15%；在汽车领域，镁合金零部件可使车身重

量降低 10%-15%，每车每年可减少 CO₂排放约 80kg；
在电子领域，镁合金外壳兼具电磁屏蔽（屏蔽效能>40dB）
与散热（热导率>150W/(m·K)）性能，已广泛应用于高

端服务器机箱。

1.2 镁合金改性技术的发展与局限

当前镁合金表面改性技术可分为三类，但其性能短

板明显（表 1 所示）：

表 1-镁合金表面改性技术对比

改性技术 涂层厚度（μm） 耐蚀周期（NSS 试验） 结合强度（MPa） 核心局限

化学转化膜 1-5 <50h 5-8 厚度薄、易划伤

激光熔覆 50-200 150-200h 30-40 热应力开裂、成本高[6]

传统直流电沉积 10-50 80-120h 8-15 晶粒粗大、孔隙率高

脉冲电沉积技术可有效弥补上述不足：通过调控脉

冲参数，涂层厚度可精准控制在 20-80μm，结合强度突

破 20MPa，且耐蚀周期远超传统技术，是当前最具工业

化潜力的镁合金防护技术之一[1]。

2 脉冲电沉积制备纳米晶镁合金涂层的基本原

理

2.1 脉冲电沉积工艺的技术特点与参数协同效应

脉冲电沉积的核心工艺参数包括电流密度（J）、

脉冲频率（f）、占空比（D），三者协同影响涂层微观

结构与性能：

电流密度（ J）：决定离子还原速率。 J 过低

（<1.0A/dm²）时，成核率低，易形成粗大晶粒；J 过高

（>3.0A/dm²）时，电极表面局部过热，导致涂层出现

针孔、裂纹。本研究确定最优 J 为 1.5-2.0A/dm²，此时

离子还原速率与成核速率平衡，涂层致密性最佳。

脉冲频率（f）：控制晶核生长时间。f<500Hz 时，

脉冲间隔过长，晶核有足够时间长大；f>1000Hz 时，

电流切换频繁，易产生极化损失，降低沉积效率。最优

f 为 800Hz，此时每周期成核-生长时间匹配，晶粒尺寸

稳定在 30nm 左右。

占空比（D）：即导通时间与脉冲周期的比值。

D<30%时，沉积效率低，涂层厚度不均；D>50%时，关

断期不足，离子补充不充分，易形成孔隙。最优 D 为

40%，此时涂层沉积效率达 85%以上，孔隙率<0.5%。

2.2 电沉积过程中的晶粒细化机制

脉冲电沉积的晶粒细化遵循“高过饱和成核-短时间

生长”机制，具体过程可分为三阶段：

1.导通期：瞬时高过饱和成核

脉冲导通时，高电流密度使电极表面 Mg²+快速还

原，界面处 Mg²+浓度瞬间降至临界值以下，形成“高过

饱和状态”。根据经典成核理论，过饱和度ΔC 与成核率

N 满足 N∝exp(-K/ΔC²)（K 为常数），高ΔC 使成核率

呈指数级提升，大量纳米级晶核同时生成，抑制单一晶

核的优势生长[1]。
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2.关断期：离子补充与晶界稳定

脉冲关断时，电解液本体中的 Mg²+通过扩散向电

极表面补充，缓解浓差极化；同时，已生成的晶核表面

原子重新排列，晶界结构趋于稳定，减少缺陷（如空位、

位错）的产生。此阶段可避免传统直流电沉积中“边成

核边长大”的问题，确保晶粒尺寸均匀。

图 1a：优化工艺下纳米晶镁合金涂层的 SEM 表面形貌图

图 1b：传统直流电沉积涂层的 SEM 表面形貌图

图 1c：纳米晶镁合金涂层与 AZ31B 基体的 SEM 截面形貌图

图 2a：纳米晶镁合金涂层的 TEM 明场像

图 2b：纳米晶镁合金涂层的高分辨 TEM（HRTEM）图像

图 3AZ31B 基体与纳米晶镁合金涂层的 XRD 对比图

3 纳米晶镁合金涂层的材料制备与显微组织表

征

3.1 实验材料与涂层制备流程

3.1.1 实验材料

基体：AZ31B 镁合金（成分：Al3.0%、Zn1.0%、

Mn0.3%，余量 Mg），尺寸为 50mm×30mm×5mm，作

为阴极。

阳极：采用高纯镁板（纯度 99.95%），以避免处

理中阳极溶解引入杂质。

电解液：0.6mol/LMgSO₄+0.1mol/LEDTA+0.05mol/
LNa₂SO₄（导电盐），用 H₂SO₄或 NaOH 调节 pH 至 5.5，
温度控制在 45℃[1]。

3.1.2 制备流程

1. 基 体 预 处 理 ： 依 次 进 行 “ 砂 纸 打 磨

（400#→800#→1200#）→丙酮超声除油（15min）
→3%HNO₃酸洗（30s，去除氧化膜）→去离子水冲洗→
吹干”处理，确保基体表面洁净、无残留药液、无氧化

膜。

2.脉冲电沉积：采用双电极体系，电极间距 5cm，

设定工艺参数（J=1.8A/dm²、f=800Hz、D=40%），沉

积时间为 60-120min，控制涂层厚度为 30-50μm。

3.后处理：沉积完成后，样品用去离子水冲洗，60℃
真空干燥 2h，避免表面氧化。

3.2 显微组织表征技术的应用与结果分析

本研究采用“多尺度表征体系”，从涂层试样的表面、

截面、晶体结构三个维度解析涂层显微组织及其对性能
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的影响：

3.2.1 扫描电子显微镜（SEM）表征

涂层 SEM 表面形貌观察显示：优化工艺制备的涂

层表面呈“均匀颗粒状”密集覆盖，颗粒尺寸约为

50-100nm（图 1a），无明显岛状凸起或凹陷出现；传

统直流电沉积涂层表面则呈相对离散的“块状堆积”形
貌，颗粒尺寸>1μm，且存在高分数明显孔隙（图 1b）。

截面形貌观察发现：涂层与基体界面呈典型的连续、

均匀的等边三角形“锯齿链状结合”（图 1c），这种机械

咬合结构可有效提升两相结合强度和抗裂性；截面内无

分层、微裂纹出现，说明涂层内部结构致密度高[1]，力

学性能均匀稳定。

3.2.2 透射电子显微镜（TEM）表征

TEM 明场像显示（图 2a），涂层中晶粒呈均匀的

等轴状，尺寸约 30nm，晶界清晰可见；经高分辨 TEM
（HRTEM）进一部观察（图 2b），晶界处原子排列有

序，无位错堆积或无定形相产生，说明晶粒发育生长过

程中缺陷较少，结构稳定性较高[5]。

4 纳米晶镁合金涂层的耐蚀性能提升及机制探

讨

4.1 纳米晶涂层耐蚀性能的实验验证

采用电化学测试与盐雾试验相结合的方式，系统评

价涂层耐蚀性能：

4.1.1 动电位极化测试

试样置入浓度为 3.5%的 NaCl 溶液中，采用三电极

体系（涂层为工作电极，饱和甘汞电极为参比电极，铂

片为辅助电极）进行测试，扫描速率 1mV/s：
基体 AZ31B 的腐蚀电位（Ecorr）为-1.52V，腐蚀

电流密度（Icorr）为 120μA/cm²；
纳米晶涂层的 Ecorr 数值提升至-1.45V，Icorr 值降

至 9.8μA/cm²，耐蚀性能获得显著提升，约为基体的 12
倍[1]。

4.1.2 电化学阻抗谱（EIS）测试

电化学阻抗谱（EIS）测试参数为：频率范围

10⁵-10⁻²Hz，扰动电压 10mV。

测试结果显示，涂层的阻抗弧半径远大于基体，且

随浸泡时间（0-48h）延长的变化较小；

4.2 耐蚀机制：晶界调控与腐蚀介质扩散抑制

纳米晶镁合金涂层的耐蚀性能提升，核心源于“微
观结构-腐蚀行为”的协同作用，具体机制可分为三方面：

4.2.1 高密度晶界的物理屏障效应

涂层内大量晶界（密度约 10¹⁵m⁻²）形成“三维网络

结构”，当腐蚀介质（如 Cl⁻）由表面向基体内渗透时，

需绕晶扩散而非穿晶扩散，扩散路径延长 3-5 倍。TEM
原位腐蚀观察显示，Cl⁻在晶界处的扩散速率仅为穿晶

扩散的 1/10，且晶界处无明显腐蚀产物堆积，说明晶界

未成为腐蚀薄弱区[5]。

4.2.2 晶界的化学吸附与钝化效应

纳米晶涂层的晶界具有高表面能（约 1.5J/m²），可

优先吸附溶液中的 OH⁻，形成薄而致密的 Mg(OH)₂钝化

膜，可降低外层 Mg 浓度，减缓 Cl⁻反应侵蚀。X 射线

光电子能谱（XPS）分析证实，晶界处形成了富 Mg(OH)₂
的钝化膜[5]；该钝化膜隔绝、阻碍 Cl⁻向内迁移与 Mg
基体进一步反应，形成“晶界吸附-钝化膜防护”的双重屏

障。
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