

盾构开仓换刀施工中的风险分析及处置措施

刘卓敏

广州珠江监理咨询集团有限公司,广东省广州市,510000;

摘要: 地铁建设是现代城市基础设施的重要组成部分,而盾构法施工因其安全性和有效性而被广泛应用。在实际施工中,尤其是在硬岩地层或软硬不均的复合型地层中,盾构刀具的磨损问题常常显著,导致需要进行开仓换刀。 开仓换刀过程中涉及的风险较高,如地下水失稳、土仓压力不稳、有害气体泄漏等。为了确保施工的顺利进行,必须对这些风险进行深入分析并采取有效的处置措施。

关键词: 地铁盾构; 开仓换刀; 风险分析 **DOI:** 10.69979/3029-2727.24.10.025

盾构法施工是地铁建设中常用的一种技术,尤其适用于复杂地层和城市环境中的地下工程。然而,在硬岩地层和软硬不均的复合型地层中,盾构刀具的磨损问题较为严重,常需要进行开仓换刀以更换磨损的刀具。这一过程不仅对施工质量和安全提出了更高的要求,还可能引发一系列的风险问题,因此,了解这些风险并采取有效的处理措施对确保施工安全十分重要。

1盾构开仓换刀施工中的风险

1.1 降水施工不理想

在盾构开仓过程中,地下水的稳定性十分关键,如果降水施工不理想,地下水会导致掌子面失稳,进而引发涌水或地面沉降等问题。特别是在软土地层或透水性较强的地层中,降水不充分会导致地下水位上升,影响施工的稳定性。

1.2 常压开仓施工中的突发问题

常压开仓施工中,突发的断电或水泵故障可能导致 降水暂停,地下水位上升,从而引发掌子面涌水涌砂和 地面沉降等现象,这些问题会显著影响施工进度和安全。

1.3 恢复掘进后的土仓压力不稳

在开仓换刀后恢复掘进,可能出现土仓压力不稳定的情况,导致掘进速度降低、出渣量增加,从而引发地 面沉降问题。

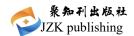
1.4 仓内有害气体问题

盾构开仓换刀过程中,土仓内可能出现有害气体, 这对施工人员的健康和安全构成威胁,因此,必须对仓 内气体进行监测和处理,以保障施工安全。

1.5 盾尾通过换刀位置后的注浆问题

盾尾通过换刀位置后,如未及时进行二次补充注浆,

会导致地面沉降超限,对周围环境造成影响。


2 盾构开仓换刀的处置措施

2.1 开仓换刀点的降水施工

在盾构开仓换刀施工中,降水施工目的是降低开仓区域地下水位,确保开仓过程的安全。降水施工实施时,在开仓换刀位置左右两侧 3-4 米的范围内,根据隧道埋深和实际水位情况,打设 2-4 口降水井,井的位置和数量需根据现场勘察结果和实际需求决定,确保能够有效降低地下水位,井的深度应覆盖到地下水层,并在一定程度上超出隧道底部,确保降水效果。

2.2 加固开仓换刀区域地面

为了有效地加固开仓换刀区域的地面,可以采用钻 孔袖阀管注浆方式。加固区域为停机刀盘正上方4米× 9米的范围内,选择这一范围进行加固是因为刀盘在施 工过程中对上方土体的影响最为直接。采用回转式地质 钻机进行钻孔作业, 该钻机能够有效地穿透不同土层, 并确保钻孔的稳定性和精确度。钻孔直径Φ120mm, 孔 深度6-8米,钻孔深度根据实际地层情况和需要加固的 土层厚度进行调整,钻孔应垂直干地面,保证注浆的均 匀性和有效性。在加固区域内进行孔位布置,采用梅花 型布置方案,保证土体加固的全面性和均匀性,孔距应 根据土层实际情况和加固要求进行设计, 通常横向间距 为 1.5 米, 纵向排距为 1.5 米。将内径Φ80mm 的袖阀管 插入钻孔中,袖阀管采用塑料材料制成,并配备橡皮套, 防止浆液在注浆过程中流窜,管端封闭,插入时管内充 满水,确保管道的清洁。使用收缩性小、脆性较高、早 期强度高的泥浆注浆材,确保浆液在土体中的有效填充, 并提高加固效果[1]。待套壳料硬化后,通过袖阀管内的 注浆器进行分段注浆,每段注浆时,加大压力使浆液顶 开橡皮管, 挤破套壳料, 确保浆液能够进入土层。

2.3 布设水位观测孔

在开仓换刀区域附近,布设两个水位观测孔,实时监测地下水位的变化。第一个水位观测孔设置在隧道旁3-4米的位置,孔深为隧道底部以下2米,用于测量静水位。该孔通过与地下水面的稳定关系,帮助判断水位变化对开仓换刀区域的影响。第二个水位观测孔则设置在降水井施工过程中,将水位管捆绑在井壁管上,这种布设方式能够在换刀期间更直观地观测地下水位的动态变化,即动水位,有助于实时了解降水效果和地下水位变化,从而为调整施工方案提供数据支持。在开仓换刀期间,需要每小时观测一次水位,并将观测结果记录在案,及时发现水位异常,及时采取应对措施。

2.4 管片止水环施作

在盾构机到达换刀点并停机时,为了减少盾构机外壁后方可能出现的来水问题,需要对盾构后方的管片进行有效的止水环施作。先对盾构机脱出盾尾后的一环管片进行开孔注浆,注浆环节采用双液浆(水玻璃与纯水泥浆按1:1比例混合),增强注浆液的封闭性和稳定性,开孔数量为5个,孔位选择在邻接块与大三块的吊装孔区域。在注浆过程中,注浆压力应控制在0.2-0.4MPa之间,避免因压力过大造成管片破坏或浆液流失,注浆量则控制在0.3-0.5m³,根据现场实际情况灵活调整,确保止水效果达到预期要求。通过合理控制注浆压力和量,可以有效防止盾构机后方的水流进入施工区域,减少地下水对开仓换刀过程的影响。

2.5 开仓检查

在进行盾构机开仓检查时,通过螺旋机出闸口和人 仓板上的球阀对土仓内的气体进行初步检测,使用气体 检测仪对土仓内的气体成分进行全面分析,确保气体含 量符合安全标准后,才能继续进行后续施工。仓门打开 后,气体检测人员需携带专用的气体检测仪器和防爆手 电,对人仓及土仓顶部、左下方和右下方的空气质量进 行详细检测, 检测范围要覆盖所有潜在的危险区域。检 测完毕后,需现场负责人进行复核确认,确保地层稳定 和空气质量合格, 开仓换刀期间要持续监测仓内气体状 况, 若检测到异常, 仓内人员应立即撤离, 确保施工人 员安全[2]。在气体检测合格后,还要检查土仓内的压力 变化、水位情况及掌子面的稳固性,在打开仓门前,对 人仓空气质量再次进行确认,检查应急关闭措施是否到 位, 合格后才能开始换刀操作。维保人员进入仓内后, 需安设安全灯具,并通过通风系统引入风管进行空气循 环,确保施工环境的通风良好和空气流通。

2.6 恢复掘进后注浆加固

在盾构机恢复掘进后,必须对已经脱出的管片进行 二次注浆处理,通常每两环进行一次注浆,以弥补开仓 换刀过程中土体的损失。注浆孔的位置选择在每环的上 部吊装孔处, 孔位可根据施工现场的实际情况进行调整。 由于隧道上方常常是注浆未饱满的区域, 注浆孔应优先 选择在管片的3点和9点之间的上半环部位。在小半径 曲线段掘进时,为克服盾构机的水平分力,二次注浆孔 宣布置在曲线的外侧。注浆过程中应根据注浆的实际效 果调整注浆压力, 注浆时需详细记录每个孔的注浆压力、 注浆量和注浆时间等参数,确保施工过程的可控性和数 据可追溯性,注浆压力应控制在 0.2-0.4Mpa 之间,确 保注浆效果最佳。在盾构机推进通过开仓换刀区域 10m 后,还需进行地面钻孔注浆,采用钻孔袖阀管注浆方式。 注浆区域为停机刀盘正上方的 3m×6m 范围, 打设 2-4 个注浆孔,钻孔深度为隧顶上方 3-5m。通过注浆对开仓 换刀上方的松散土体进行加固,防止后续施工过程中发 生沉降或塌陷。

3 盾构开仓换刀施工的难点

盾构施工是一种现代化的地下隧道施工方法,广泛应用于城市地铁、交通隧道等建设项目。其中,盾构机刀具的磨损是施工过程中不可避免的问题,刀具的更换成为确保施工连续性和效率的关键环节。然而,盾构开仓换刀施工面临诸多难点,本文将从地质条件复杂性、施工环境安全性、施工技术要求、组织协调难度等方面进行详细分析。

3.1 地质条件复杂性

3.1.1 地层稳定性

地质条件不稳定,如软土地层、岩溶地质、高水压 地层等,都可能导致开仓过程中开挖面失稳坍塌。尤其 是在软土地层中,土壤流动性大,难以形成稳定的开挖 面,增加了开仓换刀的风险。

3.1.2 地下水控制

在高水压地层中,地下水的控制是开仓换刀的重要前提。若地下水未能有效控制,可能导致仓内积水,不仅影响施工人员的作业环境,还可能导致盾构机刀具更换困难,甚至造成安全事故。

3.1.3 土体加固

对于稳定性差的土体,需要进行加固处理。常用的加固方法有液氮冻结法、化学注浆法等,但这些方法存在施工周期长、成本高、对周边环境影响大等弊端。因此,如何选择合适的加固方法,确保加固效果,是开仓换刀前的重要准备工作。

3.2 施工环境安全性

盾构开仓换刀施工环境复杂,安全隐患多,对施工 安全提出了更高要求。

3.2.1 仓内环境

开仓后,仓内环境复杂,可能存在有害气体、粉尘等。施工人员需佩戴专业的防护设备,如呼吸器、防护服等,以确保人身安全。

3.2.2 压力控制

在带压开仓换刀作业中,需严格控制仓内压力,防 止因压力变化导致开挖面失稳或施工人员产生减压病 症状。因此,需配备专业的压力控制系统,实时监测并 调整仓内压力。

3.2.3 应急响应

盾构开仓换刀过程中,突发事件时有发生,如仓内 火灾、气体泄漏等。因此,需制定完善的应急预案,提 高应急响应能力,确保在突发事件发生时能够迅速有效 地进行处置。

3.3 施工技术要求

盾构开仓换刀施工技术要求高,需具备专业的施工 团队和技术设备。

3.3.1 刀具更换技术

刀具更换是盾构开仓换刀的核心环节。需具备专业 的刀具更换技术和设备,如刀具连接装置、吊装设备等, 以确保刀具更换的准确性和高效性。

3.3.2 压力平衡技术

在常压开仓换刀中,需通过压力平衡系统保持刀盘 工作面的恒定压力,避免因开仓和封仓过程带来的工作 面变形和刀具松脱等安全隐患。

3.3.3 实时监测技术

施工过程中,需利用实时监测设备对施工过程进行 监控和记录,以便及时调整和纠正施工参数,确保施工 质量和安全。

3.4组织协调难度

盾构开仓换刀施工涉及多个环节和多个部门,组织 协调难度大。

3.4.1 施工计划

需提前制定详细的施工计划,包括开仓时间、换刀步骤、人员分工等,以确保施工过程的连续性和高效性。 3.4.2 沟通协调

施工过程中,需加强与各方的沟通协调,如与地质勘察单位、设计单位、施工单位等,以确保施工方案的合理性和可行性。

3.4.3 资源配置

需合理配置施工资源,包括人员、设备、材料等,

以确保施工过程的顺利进行。同时,需建立有效的物资 供应和保障体系,防止因物资供应不及时而影响施工进 度。

3.5 案例分析

以北京地铁 17 号线朝阳港站至十里河站区间左线 盾构开仓检修换刀为例,该工程采用素混凝土墙加固地 层方法,成功解决了地质条件复杂、施工环境安全性差 等难题。

3.5.1 加固方法

采用素混凝土墙对开挖面进行加固,提高了地层的 稳定性,降低了开仓换刀的风险。

3.5.2 施工参数

通过精确控制施工参数,如混凝土墙的厚度、强度等,确保了加固效果。同时,利用实时监测设备对施工过程进行监控和记录,及时调整施工参数,确保了施工质量和安全。

3.5.3 组织协调

施工过程中,加强了与各方的沟通协调,确保了施工方案的合理性和可行性。同时,合理配置了施工资源,建立了有效的物资供应和保障体系,确保了施工过程的顺利进行。

总而言之,盾构开仓换刀施工面临诸多难点,包括 地质条件复杂性、施工环境安全性、施工技术要求和组 织协调难度等。为克服这些难点,需采取一系列措施, 如选择合适的加固方法、提高施工安全水平、提升施工 技术能力、加强组织协调等。只有这样,才能确保盾构 开仓换刀施工的顺利进行,为城市地下空间的发展提供 有力保障。

4 结束语

在砂卵石地层中进行常压开仓换刀施工时,必须提前进行周密的筹划,避开不良地质,选择最佳的开仓换刀区域,通过打设降水井、实施地面加固、布设水位观测孔等措施,确保地下水位控制在隧道底部以下,并制定应急预案,确保开仓换刀施工的顺利进行。而在未来的盾构施工中,随着技术的不断进步和施工经验的积累,相信盾构开仓换刀施工的难点将得到进一步克服,施工效率和安全性将得到进一步提升。

参考文献

[1]王成宗. 砂土状强风化岩地层盾构机带压开仓换刀施工技术研究[J]. 建筑科技,2023,7(5):50-53.

[2]杜明阳. 富水砂卵石地层盾构开仓换刀对掌子面稳定性影响[J]. 工程机械与维修,2023(3):113-115.