
info@juzhikan.asia
成都飞机设计研究所,四川成都,610072;
摘要:水平降落型可复用货船是下一代低成本空间运输方案的重要子方向之一,由于携带载荷的多样性,此类飞行器将不可避免的遇到质心变动问题。本文针对货船,详细分析了其面临的载荷不定、质心未知和变动、与气动问题耦合等问题,并调研了国内外现有的三种飞行器质心变动解决方案,包括:质量矩控制、变质心调控操稳性能、质心容错控制,分析其作用、优缺点、当前工程可行性。最后归纳总结得出结论,以期能为进一步开展相关研究提供参考。
关键词:质心变动;可重复使用运载器;质量矩控制;变质心调控操稳性能;容错控制
参考文献
[1]Baiocco,Paolo. “Overview of reusable space systems with a look to technology aspects.”Acta Astronautica 189(2021): 10-25.
[2]宋征宇,蔡巧言,韩鹏鑫,等. 重复使用运载器制导与控制技术综述[J]. 航空学报,2021,42(11):525050.
[3]Ferretti, Stefano. Space Capacity Building in the XXI Century. Springer International Publishing, 2020.
[4]Meyer-Allyn M, Metts J, Anderson D, Johnson J, Quinn G. Dream chaser thermal control system: an overview. In42nd International Conference on Environmental Systems 2013 (p. 3452).
[5]Zea L, Warren L, Ruttley T, Mosher T, Kelsey L, Wagner E. Orbital Reef and commercial low Earth orbit destinations—upcoming space research opportunities. npj Microgravity. 2024 Mar 29;10(1):43.
[6]Freeman Jr D C,Powell R W. Impact of far-aft center of gravity for a single-stage-to-orbit vehicle[J].Journal of Spacecraft and Rockets, 1980, 17(4):311-315.
[7]赵鸿燕. 美国反导动能拦截器发展研究[J]. 飞航导弹,2016,(06):63-69.
[8]温德义;胡劲松. 美国新概念动能拦截器技术[J]. 现代军事,2003,(06):9-16.
[9]周敏;周凤岐;周军;郭建国. 变质心技术发展与应用[J]. 航空兵器,2021,(06):7-13.
[10]周敏;周凤岐;周军;郭建国. 高速飞行器变质心控制技术综述[J]. 宇航学报,2022,(03):271-281.
[11]汤佳骏. 高超声速飞行器变质心辅助控制方法研究[D].南京航空航天大学,2020.
[12]冯小刚. 民机放宽静稳定性的研究[J]. 电子设计工程,2013,(19):118-119+122.
[13]张晶. 飞机超声速巡航主动重心控制系统设计[J]. 系统仿真学报,2009,(23):7526-7530.
[14]Huber, Bernard. "Center of gravity control on Airbus aircraft: Fuel, range and loading." (1988).
[15]Mixon, Bryan, and Bernd Chudoba. "The Lockheed SR-71 Blackbird-a senior capstone re-engineering experience." 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007.
[16]Rogers J,Costello M.A variable stability protectile using an internal moving mass[J]. Proceedings of the Institution of Mechanical Engneers, Part G: Journal of Aerospace Engneering, 2009,223(7):927-938
[17]Lee, Howard, John M. Morgenstern, and Hossein Aminpour. "Aircraft with active center of gravity control." U.S. Patent No. 6,913,228. 5 Jul. 2005.
[18]Bacon, B.J.; Gregory, I.M. General equations of motion for a damaged asymmetric aircraft. AIAA Paper 2007-6306. In Proceedings of the 2007 AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC, USA, 20 August 2007.
[19]Nguyen, Nhan, et al. "Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft." AIAA Guidance, navigation, and control Conference and Exhibit. 2006.
[20]Nguyen, N.; Krishnakumar, K.; Kaneshige, J.; Nespeca, P. Flight dynamics modeling and hybrid adaptive control of damaged aircraft. J. Guid. Control. Dyn. 2008, 31, 171–186.
[21]Y. Meng, B. Jiang, R. Qi. Modeling and control of hypersonic vehicle dynamic under centroid shift. Advances in Mechanical Engineering, 2018, 10(9):1-21.
[22]Meng, Yizhen, Bin Jiang, and Ruiyun Qi. "Adaptive non‐singular fault‐tolerant control for hypersonic vehicle with unexpected centroid shift." IET Control Theory & Applications 13.12 (2019): 1773-1785.
[23]Meng, Yizhen, Chun Liu, and Yiliu Liu. "Adaptive attitude angle constrained fault-tolerant control of hypersonic vehicle with unknown centroid shift." Aerospace Science and Technology 140 (2023): 108475.
[24]吴仪政. 变负载无人机的自适应模糊自抗扰控制研究[D].华东交通大学,2021.