欢迎访问新加坡聚知刊出版有限公司官方网站
65 84368249info@juzhikan.asia
II型Z最优奇长Z互补对的构造
  • ISSN:3041-0673(Online)3041-0681(Print)
  • DOI:10.69979/3041-0673.24.4.035
  • 出版频率:月刊
  • 语言:中文
  • 收录数据库:ISSN:https://portal.issn.org/ 中国知网:https://scholar.cnki.net/journal/search

II 型 最优奇长 互补对的构造 

刘琦 

西华大学理学院,四川省成都市,611730;

摘要:通过以长为 N 的对称 Golay 互补对(S-GCP)为种子序列对,在 S-GCP 的特定位置插入 7 个码元,实现了长 为 N+7 的 II 型 Z 最优奇长二进制 Z 互补对(OB-ZCP)的构造。所得 Z 互补对的长度在之前未被提出且序列对的 零相关区外非周期自相关函数和(OZ-AACSs)较小,这为无线通信系统提供了更多的序列选择。 

关键词:Golay 互补对;Z-互补对;Z-最优;序列构造 

参考文献 

[1]Golay M. Complementary series[J]. IRE trans actions on information theory, 1961, 7(2): 82- 87. 

[2]Schmidl T M and Cox D C. Robust frequency a nd timing synchronization for OFDM[J]. IEEE Tra nsactions on Communications, 1997, 45(12): 1 613-1621. [3]Salehi J A. Code division multiple-access t echniques in optical fiber networks. I. Fundam ental principles [J]. IEEE Transactions on Comm unications, 1989, 37(8): 824-833. 

[4]Wang J H, Fan P Z, Zhou Z C, et al. Quasi-O rthogonal Z-Complementary Pairs and Their Appl ications in Fully Polarimetric Radar Systems [J]. IEEE Transactions on Information Theory, 2021, 67(7): 4876-4890. 

[5]Borwein P, Ferguson R. A complete descripti on of Golay pairs for lengths up to 100[J]. Ma thematics of computation, 2004, 73(246): 967-9 85. 

[6]Fan P Z, Yuan W N, Tu Y F. Z-complementary binary sequences[J]. IEEE Signal Processing Le tters, 2007, 14(8): 509-512.

[7]Liu Z L, Parampalli U,Guan Y L. Optimal Odd -Length Binary Z-Complementary Pairs[J]. IEEE T ransactions on Information Theory, 2014, 60(9): 5768-5781. 

[8]Li J, Huang A P, Guizani M, et al. Inter-gr oup complementary codes for interference-resis tant CDMA wireless communications[J]. IEEE Tra nsactions on Wireless Communications, 2008, 7 (1): 166-174. 

[9]Liu Z L, Parampalli U, Guan Y L. On even-pe riod binary Z-complementary pairs with large Z CZs[J]. IEEE Signal Processing Letters, 2014, 21(3): 284-287. 

[10]Li X D, Fan P Z, Tang X H, et al. Existenc e of Binary Z-Complementary Pairs[J]. IEEE Sig nal Processing Letters, 2011, 18(1): 63-66. 

[11]Shen B S, Yang Y, Zhou Z C, et al. New Opt imal Binary Z-Complementary Pairs of Odd Lengt h 2m+3 [J]. IEEE Signal Processing Letters, 20 19, 26(12): 1931-1934. 

[12]Adhikary A R, Majhi S, Liu Z L, et al. New sets of optimal odd-length binary Z-complemen tary pairs[J]. IEEE Transactions on Informatio n Theory, 2020, 66(1): 669-678. 

[13] Gu Z, Zhou Z C, Wang Q, et al. New constr uction of optimal Type-II binary Z-complementa ry pairs[J]. IEEE Transactions on Information Theory, 2021, 67(6): 3497-3508. 

[14]Tian S C, Yang M, Wang J P. Two constructi ons of binary Z-complementary pairs[J]. IEICE Transactions on Fundamentals of Electronics, C ommunications and Computer Sciences, 2021, 104 (4): 768-772. 

[15]林金朝,周银萍,李国军,等.Ⅱ型 Z-优化二元互补 序列对的构造[J].电子与信息学报,2023,45(03):913 -920. 

作者简介:刘琦(2000-),女,汉族,重庆梁平人, 硕士研究生在读,研究方向:通信序列设计。