欢迎访问新加坡聚知刊出版有限公司官方网站
info@juzhikan.asia
不同温度及围压作用下冻土三轴应力应变关系研究
  • ISSN:3029-2727(Online) 3029-2662(Print)
  • DOI:10.69979/3029-2727.25.08.050
  • 出版频率:月刊
  • 语言:中文
  • 收录数据库:ISSN:https://portal.issn.org/ 中国知网:https://scholar.cnki.net/journal/search

不同温度及围压作用下冻土三轴应力应变关系研究
邓楚涵1 钟帅1 王瑞坤1通讯作者 冯双喜1 刘永超2

1 天津大学,天津市,300354;

2 天津建城基业集团有限公司,天津市,300301;

摘要:高寒地区冻土强度较高,常导致等厚度水泥土地下连续墙施工过程中出现埋钻卡钻、刀具磨损等问题,因此,亟需对冻土的力学特性进行深入研究。本文结合室内温控三轴试验与离散元模拟,揭示了不同温度及围压作用下冻土的应力应变关系和宏细观破坏特征。研究结果表明:冻土刚度及峰值偏应力随围压增大而增大。0℃时,较小围压条件下冻土呈轻微应变软化特征,而较高围压下冻土因压融效应,孔隙冰转化为孔隙水,导致冰-砂颗粒间的咬合作用减弱,冻土主要通过克服颗粒间的摩擦作用发生破坏,整体呈剪缩趋势,表现为应变硬化特征。-15℃时,冻土首先发生孔隙冰脆性断裂,随后孔隙冰-砂重组咬合作用失效,表现为双峰破坏与应变软化特征。上述研究成果可为高寒地区地下连续墙的设计和施工提供可靠的理论基础。

关键词:冻土;应力应变关系;颗粒摩擦;咬合作用;压融效应

参考文献

[1]赵修明,张建新,刘永超,等.高寒地区坚硬土层中TRD工法应用[J].天津城建大学学报,2020,26(3):189-194.

[2]刘韶华.水泥土搅拌桩冬季施工的质量控制措施研究[J].工程技术研究,2018,(01):151-152.

[3]尹志勇.高原高寒条件下建筑工程施工质量管理研究[D].西南科技大学,2019.

[4]Ma D, Ma Q, Yuan P. SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state[J]. Cold Regions Science and Technology, 2017, 136: 37-43.

[5]张向东,刘家顺,张玉.基于邓肯-张的冻结粉质粘土本构模型的试验研究[J].固体力学学报,2014,35(02):150-159.

[6]吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1994.

[7]Xu X, Wang Y, Bai R, et al. Comparative studies on mechanical behavior of frozen natural saline silty sand and frozen desalted silty sand[J]. Cold Regions Science and Technology, 2016, 132: 81-88.

[8]Niu Y, Wang X, Liao M, et al. Strength criterion for frozen silty clay considering the effect of initial water content[J]. Cold Regions Science and Technology, 2022, 196: 103521.

[9]高娟,赖远明,常丹,等.考虑加载速率影响的冻结含盐砂土强度准则研究[J].岩土工程学报,2019,41(1):104-110.

[10]Yang Z J, Still B, Ge X. Mechanical properties of seasonally frozen and frozen soil soils at high strain rate[J]. Cold regions science and technology, 2015, 113: 12-19.

[11]单仁亮,白瑶,隋顺猛,等.淡水冰三轴压缩力学特性试验研究[J].应用基础与工程科学学报,2018,26(04):901-917.

[12]Zhang D, Liu E, Liu X, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents[J]. Cold Regions Science and Technology, 2017, 143: 1-12.

[13]Zhao X, Zhou G, Chen G, et al. Triaxial compression deformation for artificial frozen clay with thermal gradient[J]. Cold regions science and technology, 2011, 67(3): 171-177.

[14]Ma W, Chang X. Analyses of strength and deformation of an artificially frozen soil wall in underground engineering[J]. Cold Regions Science and Technology, 2002, 34(1): 11-17.

[15]Li H, Zhu Y, Zhang J, et al. Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay[J]. Cold regions science and technology, 2004, 39(1): 39-45.

[16]Chang D, Lai Y, Zhang M. A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, 159: 246-259.

[17]Luo F, Liu E, Zhu Z. A strength criterion for frozen moraine soils[J]. Cold Regions Science and Technology, 2019, 164: 102786.

[18]Jessberger H L. A state-of-the-art report. Ground freezing: Mechanical properties, processes and design[J]. Engineering Geology, 1981, 18(1-4): 5-30.

[19]Yang Y, Lai Y, Li J. Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure[J]. Cold regions science and technology, 2010, 60(3): 245-250.

[20]孙星亮,汪稔,胡明鉴,等.低围压下冻结粉质粘土的三轴强度及变形分析[J].岩土力学,2005,(10):102-106.

[21]Lei H, Wang L, Feng S, et al. Laboratory Studies on the Influence of Freezing Methodology on the Shear Strength Behavior of Artificially Frozen Clays[J]. International Journal of Geomechanics, 2023, 23(8): 04023122.

[22]李栋伟,陈军浩,周艳.复杂应力路径人工冻土三轴剪切试验及本构模型[J].煤炭学报,2016,41(S2):407-411.

[23]刘佳琳.季冻区粉质黏土三轴试验及力学参数预测模型研究[D].东北石油大学,2024.

[24]黄克智.非连续介质力学[M].北京:清华大学出版社,1989:201-211.

[25]尹楠,李双洋,裴万胜,等.冻结黏土三轴试验细观变形机理的离散元分析[J].冰川冻土,2016,38(01):178-185.

[26]袁伟,姚晓亮,王文丽.基于离散元的冻结砂土三轴力学特性研究[J].冰川冻土,2019,41(6):1388-1396.

[27]Deng C, Haigh S K. Sand deformation mechanisms and earth pressures mobilised with passive rigid retaining wall movements[J]. Géotechnique, 2022, 74(8): 729-742.

[28]Deng C, Haigh S K. Sand deformation mechanisms mobilised with active retaining wall movement[J]. Géotechnique, 2022, 72(3): 260-273.

[29]Da Silva T. Centrifuge modelling of the behaviour of geosynthetic-reinforced soils above voids[D]. , 2018.

[30]中华人民共和国住房和城乡建设部.JGJ/T50123-2019土工试验方法标准[S].北京:中国计划出版社,2019.

[31]崔嵩,贾朝阳,宋梓菡,等.哈尔滨市城市化进程对气温变化影响[J].东北农业大学学报,2020,51(9):70-78.

[32]贾海梁,王亚彪,魏尧,等.基于电阻的冻结砂砾土孔隙冰压融效应研究[J].岩土力学,2024,45(08):2221-2231+2241.

[33]Bolton MD. Discussion: The strength and dilatancy of sands. Géotechnique. 1987 Jun; 37(2): 219-26.

[34]Qian X, Liu X, Shao Z, et al. Modeling of minimum and maximum void ratios of granular soils[J]. Mathematical Problems in Engineering, 2021, 2021(1): 5092612.

[35]马少坤,黄骁,韦榕宽,等.考虑滚动阻抗的线性接触模型离散元宏细观参数敏感性研究[J].中国安全生产科学技术,2021,17(06):104-110.

[36]Roscoe K H. The influence of strains in soil mechanics[J]. Geotechnique, 1970, 20(2): 129-170.

[37]陈福全,韩钧.高频循环剪切下结构与松砂接触面的土体特性[J].土木建筑与环境工程,2011,33(04):85-92.